Current Search: Wetland ecology -- Florida -- Everglades (x)
View All Items
- Title
- Can Everglades forested wetlands significantly reduce nutrient concentrations in surface waters?.
- Creator
- Cole, Dara Michelle., Florida Atlantic University, Volin, John C.
- Abstract/Description
-
To improve water quality as part of a large restoration effort, constructed herbaceous wetlands will be used as filters of high nutrient water. In this study, I tested whether mixed forested wetlands could also be used as nutrient filters. I examined water quality parameters within a forested slough isolated from direct anthropogenic disturbance and within an impounded forest wetland receiving direct agricultural effluent. Among the water quality parameters, TP and K concentrations in the...
Show moreTo improve water quality as part of a large restoration effort, constructed herbaceous wetlands will be used as filters of high nutrient water. In this study, I tested whether mixed forested wetlands could also be used as nutrient filters. I examined water quality parameters within a forested slough isolated from direct anthropogenic disturbance and within an impounded forest wetland receiving direct agricultural effluent. Among the water quality parameters, TP and K concentrations in the forested slough were particular low. Although all nutrients, except TKN, were higher in the impounded wetland, nutrient concentrations within the wetland were lower at interior sites as compared to inflow water. Based on the use of chloride as a conservative tracer, this reduction resulted predominantly from biological and chemical processes, while physical processes played a minimal role. This study established that mixed forested wetlands can significantly reduce high nutrient levels in surface water.
Show less - Date Issued
- 2001
- PURL
- http://purl.flvc.org/fcla/dt/12772
- Subject Headings
- Wetland ecology--Florida--Everglades, Restoration ecology--Florida--Everglades, Everglades (Fla )
- Format
- Document (PDF)
- Title
- Genetic variation amongst different populations of Typha domingensis and Typha latifolia (cattails) in the Florida Everglades.
- Creator
- Tapia, Manuel N., Florida Atlantic University, Zhang, Xing-Hai
- Abstract/Description
-
This thesis is intended to explore the genetic variation between cattail species (Typha spp.), within T. domingensis in different locations, anthropoegenic conditions, and possibly discover a hybrid in the Florida Everglades. Typha domingensis is the dominant cattail species in the Everglades, while Typha latifolia a less common species is also present. Five nuclear and chloroplast protein encoding genes from around 20 samples of cattail plants were collected randomly in the Water...
Show moreThis thesis is intended to explore the genetic variation between cattail species (Typha spp.), within T. domingensis in different locations, anthropoegenic conditions, and possibly discover a hybrid in the Florida Everglades. Typha domingensis is the dominant cattail species in the Everglades, while Typha latifolia a less common species is also present. Five nuclear and chloroplast protein encoding genes from around 20 samples of cattail plants were collected randomly in the Water Conservation Areas of the Everglades Protection Act, cloned and sequenced. The results of sequencing showed differences between the two species studied, using an insertion within an intron of the Type 2 Metallothionein-like protein gene as a marker to differentiate between the two species. A high degree of nucleotide polymorphisms interspecifically was revealed. Species identification based on morphology is not always reliable that is why our marker must be utilized to confirm the identity of a plant.
Show less - Date Issued
- 2006
- PURL
- http://purl.flvc.org/fcla/dt/13415
- Subject Headings
- Everglades (Fla ), Typha--Florida--Everglades, Wetland plants--Florida--Everglades, Habitat (Ecology)--Florida--Everglades
- Format
- Document (PDF)
- Title
- The effects of water depth and vegetation on wading bird foraging habitat selection and foraging succes in the Everglades.
- Creator
- Lantz, Samantha., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Successful foraging by avian predators is influenced largely by prey availability. In a large-scale experiment at the Loxahatchee Impoundment Landscape Assessment project within the Arthur R. Marshall Loxahatchee National Wildlife Refuge, I manipulated two components of prey availability, water depth and vegetation density (submerged aquatic vegetation and emergent vegetation), and quantified the response by wading birds in terms of foraging habitat selection and foraging success. Manly's...
Show moreSuccessful foraging by avian predators is influenced largely by prey availability. In a large-scale experiment at the Loxahatchee Impoundment Landscape Assessment project within the Arthur R. Marshall Loxahatchee National Wildlife Refuge, I manipulated two components of prey availability, water depth and vegetation density (submerged aquatic vegetation and emergent vegetation), and quantified the response by wading birds in terms of foraging habitat selection and foraging success. Manly's standardized selection index showed that birds preferred shallow water and intermediate vegetation densities. However, the treatments had little effect on either individual capture rate or efficiency. This was a consistent pattern seen across multiple experiments. Birds selected for certain habitat features but accrued little benefit in terms of foraging success. I hypothesize that birds selected sites with shallow water and intermediate vegetation densities because they anticipated higher prey densities, but they did not experience it here because I controlled for prey density.
Show less - Date Issued
- 2008
- PURL
- http://purl.flvc.org/FAU/2788592
- Subject Headings
- Water birds, Habitat, Wetland ecology, Habitat selection, Avian ecology, Wildlife management
- Format
- Document (PDF)
- Title
- Dietary niche relationships of white ibis, tricolored heron and snowy egret nestlings in the northern Everglades.
- Creator
- Boyle, Robin A., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Food availability is the primary factor affecting the reproductive success in many species of birds. Diet composition can indicate diet quality, habitat use and niche requirements for breeding birds and may be variable across short and long-term time scales. Identifying primary prey types of nesting wading birds is important for the hydrologic restoration of wetlands. I collected nestling boluses during the 2008 and 2009 nesting seasons from three species of wading birds that nest in the...
Show moreFood availability is the primary factor affecting the reproductive success in many species of birds. Diet composition can indicate diet quality, habitat use and niche requirements for breeding birds and may be variable across short and long-term time scales. Identifying primary prey types of nesting wading birds is important for the hydrologic restoration of wetlands. I collected nestling boluses during the 2008 and 2009 nesting seasons from three species of wading birds that nest in the northern Everglades: White Ibis, Tricolored Herons and Snowy Egrets. White Ibis bolus composition was dominated by crayfish in both years, but exhibited some variation with landscape water depth in 2009; fish use was greatest when the wetland landscape was relatively dry. In contrast, the prey of Tricolored Herons and Snowy Egrets were primarily fish and their respective diets did not differ from one another in either fish species composition or size structure.
Show less - Date Issued
- 2010
- PURL
- http://purl.flvc.org/FAU/2953207
- Subject Headings
- Wetland ecology, Bird populations, Water birds
- Format
- Document (PDF)
- Title
- Constraints of landscape level prey availability on physiological condition and productivity of great egrets and white ibises in the Florida Everglades.
- Creator
- Herring, Garth, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Life history strategy suggests long lived bird species will adjust their nesting effort according to current conditions, balancing the costs of reproduction with their long-term needs for survival and future reproduction. The habitat conditions that produce these responses may differ between species, even within the same ecosystem, producing different nesting and population trends. I traced the pathway by which food availability influences the physiological condition of pre-breeding great...
Show moreLife history strategy suggests long lived bird species will adjust their nesting effort according to current conditions, balancing the costs of reproduction with their long-term needs for survival and future reproduction. The habitat conditions that produce these responses may differ between species, even within the same ecosystem, producing different nesting and population trends. I traced the pathway by which food availability influences the physiological condition of pre-breeding great egrets and white ibises through to reproductive measures, and the physiological condition of chicks. I focused on these two species with contrasting foraging strategies, in relation to foraging and habitat conditions to maximize the likelihood of application of these results to other wading bird species. Experimental food supplementation and physiology research on white ibis chicks demonstrated that in years with low prey availability white ibis were food limited, with increased levels of stress protein 60 and fecal corticosterone. This is the first study to demonstrate experimentally the response of stress protein 60 to changing levels of food availability. During a year with low prey availability (2007) white ibis adults and chick physiological condition was lower than that of great egrets. During the same year, fledging success was lower for both species (20% for white ibis versus 27% for great egret) but the magnitude of the decrease was particularly severe for the white ibis (76% decline versus 66% decline for the great egret). Results suggest white ibises modify their clutch size during years with poor habitat in accordance with life history traits of a long-lived species, whereas great egrets maintained their clutch size during years with poor habitat., Increasing recession rates, hydrological reversals, and prey densities influenced white ibis, whereas great egrets were most influenced by prey densities and recession rates, with no effect of hydrological reversal. During the same year, fledging success was lower for both species (20% for white ibis versus 27% for great egret) but the magnitude of the decrease was particularly severe for the white ibis (76% decline versus 66% decline for the great egret). Results suggest white ibises modify their clutch size during years with poor habitat in accordance with life history traits of a long-lived species, whereas great egrets maintained their clutch size during years with poor habitat. Increasing recession rates, hydrological reversals, and prey densities influenced white ibis, whereas great egrets were most influenced by prey densities and recession rates, with no effect of hydrological reversals. This study is the first to make the link between landscape hydrology patterns, prey availability, and responses in wading bird nesting. These linkages provide critical insight into how species' nesting patterns could differ given the same time and spatial constraints and how that may be related to long-term nesting trends. This knowledge could ultimately lead to novel predictions about population and community patterns of wetland birds.
Show less - Date Issued
- 2008
- PURL
- http://purl.flvc.org/FAU/77643
- Subject Headings
- Bird populations, Water birds, Wetland ecology
- Format
- Document (PDF)
- Title
- Hierarchical resource selection and movement of two wading bird species with divergent foraging strategies in the Everglades.
- Creator
- Beerens, James M., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Seasonal variation in food availability is one of the primary limitations to avian populations, particularly during the breeding season. However, the behavioral responses between species may differ based on foraging strategies. I examined the influence of food availability on landscape-level habitat selection, patch-level habitat selection, and movements of two wading bird species with divergent foraging strategies, the Great Egret and White Ibis. On a landscape scale, there appeared to be a...
Show moreSeasonal variation in food availability is one of the primary limitations to avian populations, particularly during the breeding season. However, the behavioral responses between species may differ based on foraging strategies. I examined the influence of food availability on landscape-level habitat selection, patch-level habitat selection, and movements of two wading bird species with divergent foraging strategies, the Great Egret and White Ibis. On a landscape scale, there appeared to be a relationship among resource availability, the temporal scale of the independent variable, and whether the response was similar or different between species. At the patch level, results demonstrated a relationship between resource availability and the spatial scale of the independent variables selected by birds. Species movements were consistent with the differing strategies. This study is the first to make the link between landscape hydrology patterns, prey availability, and responses in wading bird habitat selection at multiple spatial scales.
Show less - Date Issued
- 2008
- PURL
- http://purl.flvc.org/FAU/172667
- Subject Headings
- Water birds, Habitat, Habitat selection, Bird populations, Wetland ecology
- Format
- Document (PDF)
- Title
- Biogenic gas dynamics in peat soil blocks using ground penetrating radar: a comparative study in the laboratory between peat soils from the Everglades and from two northern peatlands in Minnesota and Maine.
- Creator
- Cabolova, Anastasija., Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
Peatlands cover a total area of approximately 3 million square kilometers and are one of the largest natural sources of atmospheric methane (CH4) and carbon dioxide (CO2). Most traditional methods used to estimate biogenic gas dynamics are invasive and provide little or no information about lateral distribution of gas. In contrast, Ground Penetrating Radar (GPR) is an emerging technique for non-invasive investigation of gas dynamics in peat soils. This thesis establishes a direct comparison...
Show morePeatlands cover a total area of approximately 3 million square kilometers and are one of the largest natural sources of atmospheric methane (CH4) and carbon dioxide (CO2). Most traditional methods used to estimate biogenic gas dynamics are invasive and provide little or no information about lateral distribution of gas. In contrast, Ground Penetrating Radar (GPR) is an emerging technique for non-invasive investigation of gas dynamics in peat soils. This thesis establishes a direct comparison between gas dynamics (i.e. build-up and release) of four different types of peat soil using GPR. Peat soil blocks were collected at peatlands with contrasting latitudes, including the Everglades, Maine and Minnesota. A unique two-antenna GPR setup was used to monitor biogenic gas buildup and ebullition events over a period of 4.5 months, constraining GPR data with surface deformation measurements and direct CH4 and CO2 concentration measurements. The effect of atmospheric pressure was also investigated. This study has implications for better understanding global gas dynamics and carbon cycling in peat soils and its role in climate change.
Show less - Date Issued
- 2010
- PURL
- http://purl.flvc.org/FAU/2974433
- Subject Headings
- Wetland ecology, Wetland ecology, Wetland ecology, Gas dynamics, Soil permeability, Ground penetrating radar, Porous materials, Fluid dynamics
- Format
- Document (PDF)
- Title
- Differentiating decomposition rates within the ridge-slough microtopography of the central Florida Everglades.
- Creator
- Van der Heiden, Sheryl R., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
The relative rates of detrital decomposition in four vegetation communities within the Everglades' ridge-slough microtopography were evaluated during two trials. Litterbags with community-specific detritus in proportion to each community's composition were put into the four communities; namely, submerged marsh, emergent marsh, short Cladium ridge, and tall Cladium ridge. These litterbags were paired with litterbags containing control leaf litter from Chrysobalanus icaco and Salix caroliniana...
Show moreThe relative rates of detrital decomposition in four vegetation communities within the Everglades' ridge-slough microtopography were evaluated during two trials. Litterbags with community-specific detritus in proportion to each community's composition were put into the four communities; namely, submerged marsh, emergent marsh, short Cladium ridge, and tall Cladium ridge. These litterbags were paired with litterbags containing control leaf litter from Chrysobalanus icaco and Salix caroliniana during the wet and dry season trials, respectively. No regional differences in decomposition were shown, but there were significant differences across communities, attributed to the initial C:N ratio of the detritus, with the fastest decomposition occurring in the deepest submerged marsh followed by emergent marsh, and the shallower ridge communities had equally slower decomposition. Additionally, both controls followed the same pattern. Thus, decomposition contributes to an active self-maintenance mechanism within the vegetation communities which ultimately helps to conserve the ridges and sloughs.
Show less - Date Issued
- 2008
- PURL
- http://purl.flvc.org/FAU/166456
- Subject Headings
- Biogeochemistry, Surfaces (Technology), Measurement, Vegatation dynamics, Mathematical models, Wetland ecology
- Format
- Document (PDF)
- Title
- Factors Affecting Wading Bird Prey Concentrations in the Everglades During the Dry Season.
- Creator
- P. Brian Garrett, Gawlik, Dale E., Florida Atlantic University
- Abstract/Description
-
One factor that potentially controls the distribution and density of wading bird prey within open-water marsh habitats during seasonal drying events is the amount of available aquatic habitat, which is partly a function of the amount of microtopographic relief at a given location. To determine how microtopographic relief affects prey concentrations during dry-downs a simulation model was developed and run using empirical microtopographic data collected from the Everglades. The simulation...
Show moreOne factor that potentially controls the distribution and density of wading bird prey within open-water marsh habitats during seasonal drying events is the amount of available aquatic habitat, which is partly a function of the amount of microtopographic relief at a given location. To determine how microtopographic relief affects prey concentrations during dry-downs a simulation model was developed and run using empirical microtopographic data collected from the Everglades. The simulation suggests that those locations within the marsh with higher levels of microtopographic relief concentrate prey earlier during the dry-down period and potentially to greater densities overall. In addition, a model selection analysis was performed on field data to determine which set of factors displayed the greatest effects upon prey concentrations during drydown events. When examining the best selected a priori model it appears that the amount of available aquatic habitat, water depth, and macrophyte density have the strongest affects upon concentrations of prey during a seasonal drying event.
Show less - Date Issued
- 2007
- PURL
- http://purl.flvc.org/fau/fd/FA00000769
- Subject Headings
- Water birds--Florida--Everglades, Wetland ecology--Florida--Everglades, Bird populations--Climatic factors--Florida--Everglades
- Format
- Document (PDF)
- Title
- Wading bird prey production and prey selection in a dynamic wetland.
- Creator
- Klassen, Jessica A., Gawlik, Dale E., Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Anthropogenic impacts, such as habitat destruction and spread of exotic species, are contributing to the sixth major extinction event in Earth’s history. To develop effective management and conservation plans, it is important to understand the ecological drivers of at-risk populations, assess the ability of a population to adapt to environmental change, and develop research methods for long-term ecosystem monitoring. I used wading birds nesting in the Florida Everglades, USA as a model system...
Show moreAnthropogenic impacts, such as habitat destruction and spread of exotic species, are contributing to the sixth major extinction event in Earth’s history. To develop effective management and conservation plans, it is important to understand the ecological drivers of at-risk populations, assess the ability of a population to adapt to environmental change, and develop research methods for long-term ecosystem monitoring. I used wading birds nesting in the Florida Everglades, USA as a model system to address the challenges of managing and monitoring populations within an ecosystem greatly impacted by anthropogenic activities. Specifically, my project investigated 1) the prey selection of wading bird species, and the role of prey and foraging habitat availability on annual nesting numbers, 2) the ability of using diet change to predict species adaptability to a rapidly changing environment, and 3) the use of sensory data to provide low-cost, long-term monitoring of dynamic wetlands. I found that tricolored herons, snowy egrets, and little blue herons consumed marsh fish larger than those generally available across the landscape. Additionally, number of nests initiated by tricolored herons, snowy egrets, and little blue herons was strongly correlated with the annual densities of large fish available within the Everglades landscape. Conversely, number of nests initiated by wood storks, great egrets, and white ibises was more correlated with the amount of foraging habitat availability across the nesting season. Wood stork diets changed considerably since the 1960’s, consisting of mainly sunfish and exotic fish as opposed to marsh fishes dominant in historical diet studies. Storks also consumed more exotic fish species than they did historically. This diet plasticity and the species’ ability to exploit anthropogenic habitats may be conducive to maintaining population viability as storks experience widespread human-induced changes to their habitat. Sensory-only data models generated complementary results to models that used site-specific field data. Additionally, sensory-only models were able to detect different responses between size classes of fish to the processes that increase their concentrations in drying pools. However, the degree to which sensory variables were able to fit species data was dependent upon the ability of sensors to measure species-specific population drivers and the scale at which sensors can measure environmental change.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004716
- Subject Headings
- Charadriiformes -- Habitat -- Florida -- Everglades, Ciconiiformes -- Habitat -- Florida -- Everglades, Everglades National Park (Fla.) -- Environmental conditions, Predation (Biology), Wetland ecology, Wildlife conservation
- Format
- Document (PDF)
- Title
- Characteristics Affecting Prey Vulnerability and Avian Habitat Selection in the Florida Everglades.
- Creator
- Harris, Rachael L., Gawlik, Dale E., Florida Atlantic University
- Abstract/Description
-
The vulnerability of prey to capture plays a fundamental role in determining overall prey availability for wading birds. Structural complexity can act to decrease prey vulnerability and influence foraging habitat selection. To determine how structural complexity can affect habitat selection I conducted a use vs. availability study throughout the Florida Everglades in 2005 and 2006. Results indicated that wading birds chose foraging sites that had less emergent vegetation and a thicker...
Show moreThe vulnerability of prey to capture plays a fundamental role in determining overall prey availability for wading birds. Structural complexity can act to decrease prey vulnerability and influence foraging habitat selection. To determine how structural complexity can affect habitat selection I conducted a use vs. availability study throughout the Florida Everglades in 2005 and 2006. Results indicated that wading birds chose foraging sites that had less emergent vegetation and a thicker flocculent layer relative to random sites. Submerged vegetation, and the height of emergent vegetation did not affect wading bird site selection. A difference in habitat selection between years was evident due to hydrological conditions. Ideal hydrological conditions are probably the most important parameter to wading bird success. Other factors affecting prey vulnerability became increasingly important in years of poor hydrology, probably because the penalty for choosing low quality foraging habitat would be greater than in years of more optimal conditions.
Show less - Date Issued
- 2007
- PURL
- http://purl.flvc.org/fau/fd/FA00000754
- Subject Headings
- Everglades (Fla), South Florida Water Management District (Fla ), Wildlife management--Florida--Everglades, Bird populations--Florida--Everglades, Water birds--Florida--Everglades, Wetland ecology--Florida--Everglades
- Format
- Document (PDF)
- Title
- Population distribution, habitat selection, and life history of the slough crayfish (Procambarus fallax) in the ridge-slough landscape of the central Everglades.
- Creator
- Van der Heiden, Craig., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Understanding where and why organisms are distributed in the environment are central themes in ecology. Animals live in environments in which they are subject to competing demands, such as the need to forage, to find mates, to reproduce, and to avoid predation. Optimal habitats for these various activities are usually distributed heterogeneously in the landscape and may vary both spatially and temporally, causing animals to adjust their locations in space and time to balance these conflicting...
Show moreUnderstanding where and why organisms are distributed in the environment are central themes in ecology. Animals live in environments in which they are subject to competing demands, such as the need to forage, to find mates, to reproduce, and to avoid predation. Optimal habitats for these various activities are usually distributed heterogeneously in the landscape and may vary both spatially and temporally, causing animals to adjust their locations in space and time to balance these conflicting demands. In this dissertation, I outline three studies of Procambarus fallax in the ridge-slough landscape of Water conservation Area 3A (WCS-3A). The first section outlines an observational sampling study of crayfish population distribution in a four hectare plot, where I statistically model the density distribution at two spatial scales. ... Secondly, I use radio telemetry to study individual adult crayfish movements at two study sites and evaluate habitat selection using Resource Selection Functions. In the third section, I test the habitat selection theory, ideal free distribution, by assessing performance measures (growth and mortality) of crayfish in the two major vegetation types in a late wet season (November 2007) and early wet season (August 2009).
Show less - Date Issued
- 2012
- PURL
- http://purl.flvc.org/FAU/3356890
- Subject Headings
- Habitat selection, Statistical methods, Fish habitat improvement, Crayfish, Life cycles, Wetland ecology, Habitat (Ecology)
- Format
- Document (PDF)
- Title
- The effect of hydroperiod on the growth of the crayfish species Procambarus alleni and Procambarus fallax: Two keystone species in the Florida Everglades.
- Creator
- Gardner, Matthew D., Florida Atlantic University, Volin, John C.
- Abstract/Description
-
The Everglades ecosystem is home to two species of freshwater crayfish: the Everglades crayfish Procambarus alleni and the slough crayfish Procambarus fallax. These species play a key ecological role by transporting energy from primary producers to higher trophic levels. Understanding the factors that regulate crayfish growth is an essential step in restoring their productivity in the Everglades ecosystem. In order to determine the effect of hydroperiod on crayfish growth, I collected...
Show moreThe Everglades ecosystem is home to two species of freshwater crayfish: the Everglades crayfish Procambarus alleni and the slough crayfish Procambarus fallax. These species play a key ecological role by transporting energy from primary producers to higher trophic levels. Understanding the factors that regulate crayfish growth is an essential step in restoring their productivity in the Everglades ecosystem. In order to determine the effect of hydroperiod on crayfish growth, I collected crayfish from the Florida Everglades and subjected them to one of three hydroperiod treatments. The growth of both crayfish species in reduced hydroperiod treatments was significantly less than those in long hydroperiod treatments. Procambarus alleni had a significantly faster initial growth rate than P. fallax, which may give it a competitive advantage in shorter hydroperiod marshes and help explain the distributions of these two species. The results of this study indicate that lengthening hydroperiods in the Everglades ecosystem may have a positive effect on crayfish productivity.
Show less - Date Issued
- 2006
- PURL
- http://purl.flvc.org/fcla/dt/13361
- Subject Headings
- Ecosystem management--Florida--Everglades National Park, Everglades National Park (Fla ), Crayfish--Habitat--Florida--Everglades National Park, Wetland ecology--Florida--Everglades National Park
- Format
- Document (PDF)
- Title
- Forest wetland response to nutrient enrichment on the Big Cypress Seminole Indian Reservation.
- Creator
- Jacobs, Alyssa B., Florida Atlantic University, Volin, John C., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
The Big Cypress Swamp and the Everglades of South Florida are inherently oligotrophic ecosystems that in recent decades have been subjected to increasing agricultural nutrient inputs. While extensive research regarding deleterious effects of nutrient impacts has been conducted in the phosphorus-deficient Everglades, there is a lack of research in Big Cypress Swamp. This 12-month field study assessed the responsiveness of Taxodium distichum, Fraxinus caroliniana, and herbaceous vegetation to...
Show moreThe Big Cypress Swamp and the Everglades of South Florida are inherently oligotrophic ecosystems that in recent decades have been subjected to increasing agricultural nutrient inputs. While extensive research regarding deleterious effects of nutrient impacts has been conducted in the phosphorus-deficient Everglades, there is a lack of research in Big Cypress Swamp. This 12-month field study assessed the responsiveness of Taxodium distichum, Fraxinus caroliniana, and herbaceous vegetation to increased nutrient levels in Big Cypress Swamp. Six nutrient treatments (Control, N, P, K, 2K, and PxK) were applied to the soil surrounding these trees. F. caroliniana had higher photosynthetic rates with 2K treatments and higher growth rates with PxK treatments. T. distichum had higher Leaf Area Index in the P and PxK treatment but did not exhibit other responses to treatment. Herbaceous vegetation showed little response to treatments. This study concluded that potassium may be co-limiting in this ecosystem.
Show less - Date Issued
- 2004
- PURL
- http://purl.flvc.org/fcla/dt/13129
- Subject Headings
- Wetland ecology--Florida, Restoration ecology--Florida, Everglades (Fla ), Big Cypress Swamp (Fla ), Seminole Tribe of Florida, Discrimination learning
- Format
- Document (PDF)
- Title
- Development, evaluation, and application of spatio-temporal wading bird foraging models to guide everglades restoration.
- Creator
- Beerens, James M., Noonburg, Erik G., Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
In south Florida, the Greater Everglades ecosystem supports sixteen species of wading birds. Wading birds serve as important indicator species because they are highly mobile, demonstrate flexible habitat selection, and respond quickly to changes in habitat quality. Models that establish habitat relationships from distribution patterns of wading birds can be used to predict changes in habitat quality that may result from restoration and climate change. I developed spatio-temporal species...
Show moreIn south Florida, the Greater Everglades ecosystem supports sixteen species of wading birds. Wading birds serve as important indicator species because they are highly mobile, demonstrate flexible habitat selection, and respond quickly to changes in habitat quality. Models that establish habitat relationships from distribution patterns of wading birds can be used to predict changes in habitat quality that may result from restoration and climate change. I developed spatio-temporal species distribution models for the Great Egret, White Ibis, and Wood Stork over a decadal gradient of environmental conditions to identify factors that link habitat availability to habitat use (i.e., habitat selection), habitat use to species abundance, and species abundance (over multiple scales) to nesting effort and success. Hydrological variables (depth, recession rate, days since drydown, reversal, and hydroperiod) over multiple temporal scales and with existing links to wading bird responses were used as proxies for landscape processes that influence prey availability (i.e., resources). In temporal foraging conditions (TFC) models, species demonstrated conditional preferences for resources based on resource levels at differing temporal scales. Wading bird abundance was highest when prey production from optimal periods of wetland inundation was concentrated in shallow depths. Similar responses were observed in spatial foraging conditions (SFC) models predicting spatial occurrence over time, accounting for spatial autocorrelation. The TFC index represents conditions within suitable depths that change daily and reflects patch quality, whereas the SFC index spatially represents suitability of all cells and reflects daily landscape patch abundance. I linked these indices to responses at the nest initiation and nest provisioning breeding phases from 1993-2013. The timing of increases and overall magnitude of resource pulses predicted by the TFC in March and April were strongly linked to breeding responses by all species. Great Egret nesting effort and success were higher with increases in conspecific attraction (i.e., clustering). Wood Stork nesting effort was closely related to timing of concurrently high levels of patch quality (regional scale) and abundance (400-m scale), indicating the importance of a multi-scaled approach. The models helped identify positive and negative changes to multi-annual resource pulses from hydrological restoration and climate change scenarios, respectively.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004078, http://purl.flvc.org/fau/fd/FA00004078
- Subject Headings
- Everglades National Park (Fla.) -- Environmental conditions, Restoration ecology -- Florida -- Everglades National Park, Water birds -- Florida -- Geographical distribution, Water birds -- Habitat -- Florida -- Everglades National Park, Wetland restoration -- Florida -- Everglades National Park
- Format
- Document (PDF)
- Title
- Mechanisms Controlling Distribution of Cosmopolitan Submerged Aquatic Vegetation: A Model Study of Ruppia maritima L. (widgeongrass) at the Everglades-Florida Bay Ecotone.
- Creator
- Strazisar, Theresa, Koch, Marguerite, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Aquatic plants and submerged aquatic vegetation (SAV) are some of the most wide-ranging species and create important habitat for fish and wildlife in many ecosystems, including highly variable coastal ecotones. Mechanistically understanding factors controlling current distributions of these species is critical to project future distribution and abundance under increasing variability and climate change. I used a population-based approach to quantify the effects of spatial and temporal...
Show moreAquatic plants and submerged aquatic vegetation (SAV) are some of the most wide-ranging species and create important habitat for fish and wildlife in many ecosystems, including highly variable coastal ecotones. Mechanistically understanding factors controlling current distributions of these species is critical to project future distribution and abundance under increasing variability and climate change. I used a population-based approach to quantify the effects of spatial and temporal variability on life history transitions of the SAV Ruppia maritima L. (widgeongrass) in the highly dynamic Everglades-Florida Bay ecotone as a model to (1) examine which life history stages were most constrained by these conditions and (2) determine how management can promote life history development to enhance its distribution, an Everglades restoration target. Ruppia maritima life history transitions were quantified in a series of laboratory and field experiments encompassing a ra nge of abiotic and biotic factors known to affect seagrass and SAV (salinity, salinity variability, temperature, light and nutrients and seed bank recruitment and competition). These studies revealed that R. maritima life history varied east to west across the Everglades ecotone, driven by multiple gradients in abiotic factors that constrained different life history transitions in distinct ways. Based on this examination, persistence of SAV populations from dynamic coastal environments is highly dependent on large reproductive events that produce high propagule densities for recruitment. Large productive meadows of SAV also depend on high rates of clonal reproduction where vegetation completely regenerates in a short amount of time. Therefore, in hydrologically variable systems, maintenance or increases in SAV reproduction is required for population persistence through recruitment. However, SAV communities that do not experience high rates of sexual reproduction are dependent on successful seed germination, seedling and adult survival and clonal reproduction for biomass production and maintenance. Seedling survival and to a lesser extent, adult survival, are bottlenecks that can limit life history transitions under highly variable hydrological conditions. To ensure long-term survival in these communities, management activities that increase survival and successful life history development through these critical stages will be beneficial. If not, SAV populations may become highly reduced and ephemeral, providing less productive habitat.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004549, http://purl.flvc.org/fau/fd/FA00004549
- Subject Headings
- Coastal zone management, Ruppia maritima -- Ecology -- Everglades National Park (Fla.), Ruppia maritima -- Ecology -- Florida Bay (Fla.), Seagrasses -- Everglades National Park (Fla.), Seagrasses -- Florida Bay (Fla.), Wetland ecology -- Everglades National Park (Fla.), Wetland ecology -- Florida Bay (Fla.)
- Format
- Document (PDF)