Current Search: Turbomachines -- Fluid dynamics (x)
View All Items
- Title
- Predicting the flow & noise of a rotor in a turbulent boundary layer using an actuator disk – Rans approach.
- Creator
- Buono, Armand C., Glegg, Stewart A. L., Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The numerical method presented in this study attempts to predict the mean, non-uniform flow field upstream of a propeller partially immersed in a thick turbulent boundary layer with an actuator disk using CFD based on RANS in ANSYS FLUENT. Three different configurations, involving an infinitely thin actuator disk in the freestream (Configuration 1), an actuator disk near a wall with a turbulent boundary layer (Configuration 2), and an actuator disk with a hub near a wall with a turbulent...
Show moreThe numerical method presented in this study attempts to predict the mean, non-uniform flow field upstream of a propeller partially immersed in a thick turbulent boundary layer with an actuator disk using CFD based on RANS in ANSYS FLUENT. Three different configurations, involving an infinitely thin actuator disk in the freestream (Configuration 1), an actuator disk near a wall with a turbulent boundary layer (Configuration 2), and an actuator disk with a hub near a wall with a turbulent boundary layer (Configuration 3), were analyzed for a variety of advance ratios ranging from J = 0.48 to J =1.44. CFD results are shown to be in agreement with previous works and validated with experimental data of reverse flow occurring within the boundary layer above the flat plate upstream of a rotor in the Virginia Tech’s Stability Wind Tunnel facility. Results from Configuration 3 will be used in future aero-acoustic computations.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004269, http://purl.flvc.org/fau/fd/FA00004269
- Subject Headings
- Aeroelasticity, Computational fluid dynamics, Fluid dynamic measurements, Fluid mechanics -- Mathematical models, Turbomachines -- Fluid dynamics, Turbulence -- Mathematical models
- Format
- Document (PDF)
- Title
- Far-Field Noise From a Rotor in a Wind Tunnel.
- Creator
- Grant, Justin Alexander, Glegg, Stewart A. L., Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
This project is intended to demonstrate the current state of knowledge in the prediction of the tonal and broadband noise radiation from a Sevik rotor. The rotor measurements were made at the Virginia Tech Stability Wind Tunnel. Details of the rotor noise and flow measurements were presented by Wisda et al(2014) and Murray et al(2015) respectively. This study presents predictions based on an approach detailed by Glegg et al(2015) for the broadband noise generated by a rotor in an...
Show moreThis project is intended to demonstrate the current state of knowledge in the prediction of the tonal and broadband noise radiation from a Sevik rotor. The rotor measurements were made at the Virginia Tech Stability Wind Tunnel. Details of the rotor noise and flow measurements were presented by Wisda et al(2014) and Murray et al(2015) respectively. This study presents predictions based on an approach detailed by Glegg et al(2015) for the broadband noise generated by a rotor in an inhomogeneous flow, and compares them to measured noise radiated from the rotor at prescribed observer locations. Discrepancies between the measurements and predictions led to comprehensive study of the flow in the wind tunnel and the discovery of a vortex upstream of the rotor at low advance ratios. The study presents results of RANS simulations. The static pressure and velocity profile in the domain near the rotor's tip gap region were compared to measurements obtained from a pressure port array and a PIV visualization of the rotor in the wind tunnel.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004501, http://purl.flvc.org/fau/fd/FA00004501
- Subject Headings
- Aerodynamic noise, Computational fluid dynamics, Fluid dynamic measurement, Fluid mechanics -- Mathematical models, Fluid structure interactioin, Turbomachines -- Fluid dynamics, Turbulence -- Mathematical models, Unsteady flow (Fluid dynamics)
- Format
- Document (PDF)
- Title
- Numerical Assessment of Eddy-Viscosity Turbulence Models of an Axial-Flow Turbine at a Low Reynolds Number.
- Creator
- Estrada, Nick Dagoberto, Moslemian, Davood, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The flow field behavior of axial flow turbines is of great importance, especially in modern designs that may operate at a low Reynolds number. At these low Reynolds numbers, the efficiency loss is significantly augmented compared to higher Reynolds number flows. A detailed incompressible numerical study of a single stage axial-flow turbine at a low Reynolds number is investigated with the use of multiple eddy-viscosity turbulence models. The study includes epistemic uncertainty quantification...
Show moreThe flow field behavior of axial flow turbines is of great importance, especially in modern designs that may operate at a low Reynolds number. At these low Reynolds numbers, the efficiency loss is significantly augmented compared to higher Reynolds number flows. A detailed incompressible numerical study of a single stage axial-flow turbine at a low Reynolds number is investigated with the use of multiple eddy-viscosity turbulence models. The study includes epistemic uncertainty quantification as a form of numerical error estimation. The numerical results show good qualitative and quantitative agreement with experimental data. It was found that the shear stress transport (SST) k - ω turbulence model with rotation/curvature correction and inclusion of transition modeling is most capable at predicting the mean velocity distribution, which is further enhanced when the URANS formulation is employed. However, all the cases indicate a large variation in the prediction of the root-mean-squared of the turbulent velocity fluctuations.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004587, http://purl.flvc.org/fau/fd/FA00004587
- Subject Headings
- Turbomachines--Fluid dynamics., Turbulence--Mathematical models., Structural dynamics., Viscous flow--Mathematical models., Reynolds number., Axial flow.
- Format
- Document (PDF)