Current Search: Sedimentary basins -- Florida -- Biscayne Aquifer (x)
View All Items
- Title
- Multi-scale characterization of dissolution structures and porosity distribution in the upper part of the Biscayne aquifer using ground penetrating radar (GPR).
- Creator
- Mount, Gregory J., Comas, Xavier, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Geosciences
- Abstract/Description
-
The karst Biscayne aquifer is characterized by a heterogeneous spatial arrangement of porosity, making hydrogeological characterization difficult. In this dissertation, I investigate the use of ground penetrating radar (GPR), for understanding the spatial distribution of porosity variability in the Miami Limestone presented as a compilation of studies where scale of measurement is progressively increased to account for varying dimensions of dissolution features. In Chapter 2, GPR in zero...
Show moreThe karst Biscayne aquifer is characterized by a heterogeneous spatial arrangement of porosity, making hydrogeological characterization difficult. In this dissertation, I investigate the use of ground penetrating radar (GPR), for understanding the spatial distribution of porosity variability in the Miami Limestone presented as a compilation of studies where scale of measurement is progressively increased to account for varying dimensions of dissolution features. In Chapter 2, GPR in zero offset acquisition mode is used to investigate the 2-D distribution of porosity and dielectric permittivity in a block of Miami Limestone at the laboratory scale (< 1.0 m). Petrophysical models based on fully saturated and unsaturated. water conditions are used to estimate porosity and solid dielectric permittivity of the limestone. Results show a good correspondence between analytical and GPR-based porosity estimates and show variability between 22.0-66.0 %. In Chapter 3, GPR in common offset and common midpoint acquisition mode are used to estimate bulk porosity of the unsaturated Miami Limestone at the field scale (10.0-100.0 m). Estimates of porosity are based on the assumption that the directly measured water table reflector is flat and that any deviation is attributed to changes in velocity due to porosity variability. Results show sharp changes in porosity ranging between 33.2-60.9 % attributed to dissolution areas. In Chapter 4, GPR in common offset mode is used to characterize porosity variability in the saturated Biscayne aquifer at 100-1000 m field scales. The presence of numerous diffraction hyperbolae are used to estimate electromagnetic wave velocity and asses both horizontal and vertical changes in porosity after application of a petrophysical model. Results show porosity variability between 23.0-41.0 % and confirm the presence of isolated areas that could serve as enhanced infiltration or recharge. This research allows for the identification and delineation areas of macroporosity areas at 0.01 m lateral resolution and shows variability of porosity at different scales, reaching 37.0 % within 1.3 m, associated with areas of enhanced dissolution. Such improved resolution of porosity estimates can benefit water management efforts and transport modelling and help to better understand small scale relationships between ground water and surface water interactions.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004143
- Subject Headings
- Ground penetrating radar, Limestone -- Florida -- Miami Dade County -- Analysis, Physical geology, Sedimentary basins -- Florida -- Biscayne Aquifer, Sedimentation analysis
- Format
- Document (PDF)
- Title
- Three-dimensional geomodeling to identify spatial relations between lithostratigraphy and porosity in the karst carbonate biscayne aquifer, southeastern Florida.
- Creator
- Westcott, Richard, Root, Tara L., Florida Atlantic University, Charles E. Schmidt College of Science, Department of Geosciences
- Abstract/Description
-
In southeastern Florida, the majority of drinking water comes from the Biscayne aquifer. This aquifer is comprised of heterogeneous limestones, sandstones, sand, shell and clayey sand with zones of very high permeability. Visualizing the spatial variations in lithology, porosity and permeability of heterogeneous aquifers, like the Biscayne, can be difficult using traditional methods of investigation. Using the Roxar IRAP RMS software multi-layered 3D conceptual geomodels of the lithology,...
Show moreIn southeastern Florida, the majority of drinking water comes from the Biscayne aquifer. This aquifer is comprised of heterogeneous limestones, sandstones, sand, shell and clayey sand with zones of very high permeability. Visualizing the spatial variations in lithology, porosity and permeability of heterogeneous aquifers, like the Biscayne, can be difficult using traditional methods of investigation. Using the Roxar IRAP RMS software multi-layered 3D conceptual geomodels of the lithology, cyclostratigraphy and porosity were created in a portion of the Biscayne aquifer. The models were built using published data from borehole geophysical measurements, core samples, and thin sections. Spatial relations between lithology, cyclostratigraphy, porosity, and preferential flow zones were compared and contrasted to better understand how these geologic features were inter-related. The models show local areas of differing porosity within and cross-cutting different cycles and lithologies. Porosity in the Biscayne aquifer study area follows a hierarchy attributed to lithofacies with a pattern of increasing porosity for the high frequency cycles. This modeling improves understanding of the distribution and interconnectedness of preferential flow zones, and is thus an invaluable tool for future studies of groundwater flow and groundwater contamination in the Biscayne aquifer.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004337, http://purl.flvc.org/fau/fd/FA00004337
- Subject Headings
- Biscayne Aquifer (Fla.), Geophysics -- Florida -- Miami Dade County, Groundwater flow -- Florida -- Miami Dade County -- Mathematical models, Hydrology, Karst -- Florida -- Miami Dade County, Porosity, Sedimentary basins -- Florida -- Biscayne Aquifer, Sedimentology -- Statistical methods, Soil permeability
- Format
- Document (PDF)