Current Search: Renewable energy sources (x)
View All Items
- Title
- A hydrokinetic resource assessment of the Florida Current.
- Creator
- Smentek-Duerr, Alana E., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The Straits of Florida has been noted as a potential location for extraction of the kydrokinetic energy of the Florida Current, in view of the strength of the current and its proximity to the shore. ... This research explores the Florida Current as a potential renewable energy source. By utilizing historical data, in situ observations of the Florida Current, and computer model data, the hydrokinetic resource of the Florida Current is characterized both spatially and temporally. Subsequently,...
Show moreThe Straits of Florida has been noted as a potential location for extraction of the kydrokinetic energy of the Florida Current, in view of the strength of the current and its proximity to the shore. ... This research explores the Florida Current as a potential renewable energy source. By utilizing historical data, in situ observations of the Florida Current, and computer model data, the hydrokinetic resource of the Florida Current is characterized both spatially and temporally. Subsequently, based on the geographic variability of the hydrokinetic power and other factors that impact the economy of a hydrokinetic turbine array installation, the ideal locations for turbine array installation within the Florida Current are identified.... Additionally, an interactive tool has been developed in which array parameters are input - including installation location, turbine diameter, turbine cut-in speed, etc. - and array extraction estimates, ideal installation position, and water depth at the installation points are output. As ocean model data is prominently used in this research, a discussion about the limitations of the ocean model data and a method for overcoming these limitations are described. Globally, the distribution of hydrokinetic power intensity is evaluated to identify other currents that have a high hydrokinetic resource.
Show less - Date Issued
- 2012
- PURL
- http://purl.flvc.org/FAU/3356018
- Subject Headings
- Renewable energy sources, Energy consumption, Renewable natural resources, Ocean energy sources
- Format
- Document (PDF)
- Title
- Sea current generator.
- Creator
- Wilson, Debra L.
- PURL
- http://purl.flvc.org/fcla/dt/3358745
- Subject Headings
- Energy, Ocean currents, Alternative energy sources, Renewable energy sources, Ocean wave power
- Format
- Document (PDF)
- Title
- Determining anchoring systems for marine renewable energy devices moored in a western boundary current.
- Creator
- Seibert, Michael G., Charles E. Schmidt College of Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
In this thesis anchoring systems for marine renewable energy devices are examined for an area of interest off the coast of Southeast Florida that contains both ocean current and thermal resources for future energy extraction. Bottom types observed during previous regional benthic surveys are compiled and anchor performance of each potential anchor type for the observed bottom types is compared. A baseline range of environmental conditions is created by combining local current measurements and...
Show moreIn this thesis anchoring systems for marine renewable energy devices are examined for an area of interest off the coast of Southeast Florida that contains both ocean current and thermal resources for future energy extraction. Bottom types observed during previous regional benthic surveys are compiled and anchor performance of each potential anchor type for the observed bottom types is compared. A baseline range of environmental conditions is created by combining local current measurements and offshore industry standards. Numerical simulations of single point moored marine hydrokinetic devices are created and used to extract anchor loading for two potential deployment locations, multiple mooring scopes, and turbine rotor diameters up to 50 m. This anchor loading data is used for preliminary anchor sizing of deadweight and driven plate anchors on both cohesionless and cohesive soils. Finally, the capabilities of drag embedment and pile anchors relevant to marine renewable energy devices are discussed.
Show less - Date Issued
- 2011
- PURL
- http://purl.flvc.org/FAU/3172697
- Subject Headings
- Ocean energy resources, Renewable energy sources, Deep-sea moorings, Ocean engineering, Geothermal energy
- Format
- Document (PDF)
- Title
- Simulations and feedback control of nonlinear coupled electromechanical oscillators for energy conversion applications.
- Creator
- Psarrou, Dimitrios., Dhanak, Manhar R., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
This thesis discusses the coupling of a mechanical and electrical oscillator, an arrangement that is often encountered in mechatronics actuators and sensors. The dynamics of this coupled system is mathematically modeled and a low pass equivalent model is presented. Numerical simulations are then performed, for various input signals to characterize the nonlinear relationship between the electrical current and the displacement of the mass. Lastly a framework is proposed to estimate the mass...
Show moreThis thesis discusses the coupling of a mechanical and electrical oscillator, an arrangement that is often encountered in mechatronics actuators and sensors. The dynamics of this coupled system is mathematically modeled and a low pass equivalent model is presented. Numerical simulations are then performed, for various input signals to characterize the nonlinear relationship between the electrical current and the displacement of the mass. Lastly a framework is proposed to estimate the mass position without the use of a position sensor, enabling the sensorless control of the coupled system and additionally providing the ability for the system to act as an actuator or a sensor. This is of value for health monitoring, diagnostics and prognostics, actuation and power transfer of a number of interconnected machines that have more than one electrical system, driving corresponding mechanical subsystems while being driven by the same voltage source and at the same time being spectrally separated and independent.
Show less - Date Issued
- 2011
- PURL
- http://purl.flvc.org/FAU/3320109
- Subject Headings
- Renewable energy sources, Mechatronics, Nonlinear theories, Oscillators, System analysis
- Format
- Document (PDF)
- Title
- Design of hydrodynamic test facility and scaling procedure for ocean current renewable energy devices.
- Creator
- Valentine, William., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Simulations have been carried out to validate a hydrokinetic energy system non-dimensional scaling procedure. The requirements for a testing facility intended to test such devices will be determined from the results of the simulations. There are 6 simulations containing 3 prototype systems and 2 possible model facility depths to give a range of results. The first 4 tests are conducted using a varying current profile, while the last 2 tests use a constant current profile of 1.6 m/s. The 3...
Show moreSimulations have been carried out to validate a hydrokinetic energy system non-dimensional scaling procedure. The requirements for a testing facility intended to test such devices will be determined from the results of the simulations. There are 6 simulations containing 3 prototype systems and 2 possible model facility depths to give a range of results. The first 4 tests are conducted using a varying current profile, while the last 2 tests use a constant current profile of 1.6 m/s. The 3 prototype systems include a: 6 m spherical buoy, a 12 m spherical buoy and a turbine component system. The mooring line used for the simulations is a 6x19 Wire Rope Wire Core of diameter 100 mm and length 1000 m. The simulations are implemented using Orcaflex to obtain the dynamic behavior of the prototype and scaled system.
Show less - Date Issued
- 2012
- PURL
- http://purl.flvc.org/FAU/3356013
- Subject Headings
- Ocean energy resources, Research, Renewable energy sources, Sustainable engineering, Materials, Deep-sea moorings
- Format
- Document (PDF)
- Title
- Modeling and analysis of aluminum/air fuel cell.
- Creator
- Leon, Armando J., Zilouchian, Ali, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
The technical and scientific challenges to provide reliable sources energy for US and global economy are enormous tasks, and especially so when combined with strategic and recent economic concerns of the last five years. It is clear that as part of the mix of energy sources necessary to deal with these challenges, fuel cells technology will play critical or even a central role. The US Department of Energy, as well as a number of the national laboratories and academic institutions have been...
Show moreThe technical and scientific challenges to provide reliable sources energy for US and global economy are enormous tasks, and especially so when combined with strategic and recent economic concerns of the last five years. It is clear that as part of the mix of energy sources necessary to deal with these challenges, fuel cells technology will play critical or even a central role. The US Department of Energy, as well as a number of the national laboratories and academic institutions have been aware of the importance such technology for some time. Recently, car manufacturers, transportation experts, and even utilities are paying attention to this vital source of energy for the future. In this thesis, a review of the main fuel cell technologies is presented with the focus on the modeling, and control of one particular and promising fuel cell technology, aluminum air fuel cells. The basic principles of this fuel cell technology are presented. A major part of the study consists of a description of the electrochemistry of the process, modeling, and simulations of aluminum air FC using Matlab Simulink™. The controller design of the proposed model is also presented. In sequel, a power management unit is designed and analyzed as an alternative source of power. Thus, the system commutes between the fuel cell output and the alternative power source in order to fulfill a changing power load demand. Finally, a cost analysis and assessment of this technology for portable devices, conclusions and future recommendations are presented.
Show less - Date Issued
- 2013
- PURL
- http://purl.flvc.org/fau/fd/FA0004032
- Subject Headings
- Biomass energy, Electrocatalysis, Electrolytic capacitors -- Materials, Fuel cells -- Materials, MATLAB, Nanostructured materials, Renewable energy sources
- Format
- Document (PDF)
- Title
- Developing interpretive turbulence models from a database with applications to wind farms and shipboard operations.
- Creator
- Schau, Kyle A., Gaonkar, Gopal H., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
This thesis presents a complete method of modeling the autospectra of turbulence in closed form via an expansion series using the von Kármán model as a basis function. It is capable of modeling turbulence in all three directions of fluid flow: longitudinal, lateral, and vertical, separately, thus eliminating the assumption of homogeneous, isotropic flow. A thorough investigation into the expansion series is presented, with the strengths and weaknesses highlighted. Furthermore, numerical...
Show moreThis thesis presents a complete method of modeling the autospectra of turbulence in closed form via an expansion series using the von Kármán model as a basis function. It is capable of modeling turbulence in all three directions of fluid flow: longitudinal, lateral, and vertical, separately, thus eliminating the assumption of homogeneous, isotropic flow. A thorough investigation into the expansion series is presented, with the strengths and weaknesses highlighted. Furthermore, numerical aspects and theoretical derivations are provided. This method is then tested against three highly complex flow fields: wake turbulence inside wind farms, helicopter downwash, and helicopter downwash coupled with turbulence shed from a ship superstructure. These applications demonstrate that this method is remarkably robust, that the developed autospectral models are virtually tailored to the design of white noise driven shaping filters, and that these models in closed form facilitate a greater understanding of complex flow fields in wind engineering.
Show less - Date Issued
- 2013
- PURL
- http://purl.flvc.org/fau/fd/FA0004058
- Subject Headings
- Fluid mechanics, Renewable energy sources, Von Kármán, Theodore -- 1881-1963, Wind energy conservation systems, Wind power, Wind turbines -- Aerodynamics
- Format
- Document (PDF)
- Title
- Barometric distillation and the problem of non-condensable gases.
- Creator
- Martinson, Eiki., College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Barometric distillation is an alternative method of producing fresh water by desalination. This proposed process evaporates saline water at low pressure and consequently low temperature; low pressure conditions are achieved by use of barometric columns and condensation is by direct contact with a supply of fresh water that will be augmented by the distillate. Low-temperature sources of heat, such as the cooling water rejected by electrical power generating facilities, can supply this system...
Show moreBarometric distillation is an alternative method of producing fresh water by desalination. This proposed process evaporates saline water at low pressure and consequently low temperature; low pressure conditions are achieved by use of barometric columns and condensation is by direct contact with a supply of fresh water that will be augmented by the distillate. Low-temperature sources of heat, such as the cooling water rejected by electrical power generating facilities, can supply this system with the latent heat of evaporation. Experiments are presented that show successful distillation with a temperature difference between evaporator and condenser smaller than 10ê C. Accumulation of dissolved gases coming out of solution, a classic problem in lowpressure distillation, is indirectly measured using a gas-tension sensor. The results of these experiments are used in an analysis of the specific energy required by a production process capable of producing 15 liters per hour. With a 20ê C difference, and neglecting latent heat, this analysis yields a specific energy of 1.85 kilowatt-hour per cubic meter, consumed by water pumping and by removal of non-condensable gases.
Show less - Date Issued
- 2010
- PURL
- http://purl.flvc.org/FAU/2978949
- Subject Headings
- Chemistry, Physical and theoretical, Fluid mechanics, Saline water conversion, Renewable energy sources, Groundwater, Purification
- Format
- Document (PDF)
- Title
- Experimental analysis of the effect of waves on a floating wind turbine.
- Creator
- Isaza, Francisco, Ghenai, Chaouki, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The goal of this Thesis is to demonstrate, through experimentation, that ocean waves have a positive effect on the performance of an offshore wind turbine. A scale model wind turbine was placed into a wave tank that was completely covered and fitted with a variable speed fan to create different wind and wave conditions for testing. Through testing, different power coefficient vs. tip speed ratio graphs were created and a change in power coefficient was observed between steady operating...
Show moreThe goal of this Thesis is to demonstrate, through experimentation, that ocean waves have a positive effect on the performance of an offshore wind turbine. A scale model wind turbine was placed into a wave tank that was completely covered and fitted with a variable speed fan to create different wind and wave conditions for testing. Through testing, different power coefficient vs. tip speed ratio graphs were created and a change in power coefficient was observed between steady operating conditions and operating conditions with waves. The results show a promising increase in power production for offshore wind turbines when allowed to operate with the induced motion caused by the amplitude and frequency of water waves created.
Show less - Date Issued
- 2013
- PURL
- http://purl.flvc.org/fau/fd/FA0004026
- Subject Headings
- Fluid mechanics, Offshore wind power plants, Renewable energy sources, Wind turbines -- Design and construction
- Format
- Document (PDF)
- Title
- Developing a photovoltaic MPPT system.
- Creator
- Bennett, Thomas, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Many issues related to the design and implementation of a maximum power point tracking (MPPT) converter as part of a photovoltaic (PV) system are addressed. To begin with, variations of the single diode model for a PV module are compared, to determine whether the simplest variation may be used for MPPT PV system modeling and analysis purposes. As part ot this determination, four different DC/DC converters are used in conjunction with these different PV models. This is to verify consistent...
Show moreMany issues related to the design and implementation of a maximum power point tracking (MPPT) converter as part of a photovoltaic (PV) system are addressed. To begin with, variations of the single diode model for a PV module are compared, to determine whether the simplest variation may be used for MPPT PV system modeling and analysis purposes. As part ot this determination, four different DC/DC converters are used in conjunction with these different PV models. This is to verify consistent behavior across the different PV models, as well as across the different converter topologies. Consistent results across the different PV models, will allow a simpler model to be used for simulation ana analysis. Consistent results with the different converters will verify that MPPT algorithms are converter independent. Next, MPPT algorithms are discussed. In particular,the differences between the perturb and observe, and the incremental conductance algorithms are explained and illustrated. A new MPPT algorithm is then proposed based on the deficiencies of the other algorithms. The proposed algorithm's parameters are optimized, and the results for different PV modules obtained. Realistic system losses are then considered, and their effect on the PV system is analyzed ; especially in regards to the MPPT algorithm. Finally, a PV system is implemented and the theoretical results, as well as the behavior of the newly proposed MPPT algorithm, are verified.
Show less - Date Issued
- 2012
- PURL
- http://purl.flvc.org/FAU/3356887
- Subject Headings
- Photovoltaic power systems, Design, Electronic circuits, Electric current converters, Power (Mechanics), Renewable energy sources
- Format
- Document (PDF)
- Title
- Design of a power management model for a solar/fuel cell hybrid energy system.
- Creator
- Melendez, Rosana., College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
This thesis proposes a Power Management Model (PMM) for optimization of several green power generation systems. A Photovoltaic/Fuel cell Hybrid Energy System (PFHES) consisting of solar cells, electrolyzer and fuel cell stack is utilized to meet a specific DC load bank for various applications. The Photovoltaic system is the primary power source to take advantage of renewable energy. The electrolyzer-fuel cell integration is used as a backup and as a hydrogen storage system with the different...
Show moreThis thesis proposes a Power Management Model (PMM) for optimization of several green power generation systems. A Photovoltaic/Fuel cell Hybrid Energy System (PFHES) consisting of solar cells, electrolyzer and fuel cell stack is utilized to meet a specific DC load bank for various applications. The Photovoltaic system is the primary power source to take advantage of renewable energy. The electrolyzer-fuel cell integration is used as a backup and as a hydrogen storage system with the different energy sources integrated through a DC link bus. An overall power management strategy is designed for the optimization of the power flows among the different energy sources. Extensive simulation experiments have been carried out to verify the system performance under PMM governing strategy. The simulation results indeed demonstrate the effectiveness of the proposed approach.
Show less - Date Issued
- 2010
- PURL
- http://purl.flvc.org/FAU/2705074
- Subject Headings
- Electric power systems, Building-integrated photovoltaic systems, Renewable energy sources, Hydrogen as fuel, Research
- Format
- Document (PDF)
- Title
- A fuzzy logic material selection methodology for renewable ocean energy applications.
- Creator
- Welling, Donald Anthony., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The purpose of this thesis is to develop a renewable ocean energy material selection methodology for use in FAU's Ocean Energy Projects. A detailed and comprehensive literature review has been performed concerning all relevant material publications and forms the basis of the developed method. A database of candidate alloys has been organized and is used to perform case study material selections to validate the developed fuzzy logic approach. The ultimate goal of this thesis is to aid in the...
Show moreThe purpose of this thesis is to develop a renewable ocean energy material selection methodology for use in FAU's Ocean Energy Projects. A detailed and comprehensive literature review has been performed concerning all relevant material publications and forms the basis of the developed method. A database of candidate alloys has been organized and is used to perform case study material selections to validate the developed fuzzy logic approach. The ultimate goal of this thesis is to aid in the selection of materials that will ensure the successful performance of renewable ocean energy projects so that clean and renewable energy becomes a reality for all.
Show less - Date Issued
- 2009
- PURL
- http://purl.flvc.org/FAU/227980
- Subject Headings
- Oceanic submersibles, Control systems, Acoustical engineering, Fuzzy algorithms, Renewable energy sources
- Format
- Document (PDF)
- Title
- Integrated modeling approach for enery alternatives and green house gas mitigation in the state of Florida.
- Creator
- Thakkar, Kuntal, Ghenai, Chaouki, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The objective of the research is to develop various green-house gas (GHG) mitigations scenarios in the energy demand and supply sectors for state of Florida through energy and environment modeling tool called LEAP (Long Range Energy Alternative Planning System Model) for 2010-2050. The GHG mitigation scenarios consist of various demand and supply side scenarios. One of the GHG mitigation scenarios is crafted by taking into account the available renewable resources potential for power...
Show moreThe objective of the research is to develop various green-house gas (GHG) mitigations scenarios in the energy demand and supply sectors for state of Florida through energy and environment modeling tool called LEAP (Long Range Energy Alternative Planning System Model) for 2010-2050. The GHG mitigation scenarios consist of various demand and supply side scenarios. One of the GHG mitigation scenarios is crafted by taking into account the available renewable resources potential for power generation in the state of Florida and then the comparison has been made for transformation sector and corresponding GHG emissions through this newly developed mitigation scenario versus Business As Usual and Florida State Policy scenario. Moreover two master mitigation scenarios (Electrification and Efficiency and Lifestyle) were crafted through combination of certain GHG mitigation scenarios. The energy demand and GHG emissions assessment is performed for both master mitigation scenarios versus business As Usual scenario for 2010 – 2050.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004166, http://purl.flvc.org/fau/fd/FA00004166
- Subject Headings
- Climate change mitigation -- Florida, Greenhouse gas mitigation -- Florida, Renewable energy sources -- Florida, Ubiquitous computing
- Format
- Document (PDF)
- Title
- Study of pulsing flow of reactants in a proton exchange membrane fuel cell (PEMFC).
- Creator
- Perez, Aquiles., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Pulsing the flow of reactants in proton exchange membrane fuel cells (PEMFC) is a new frontier in the area of fuel cell research. Although power performance losses resulting from water accumulation also referred to as flooding, and power performance recovery resulting from water removal or purging, have been studied and monitored, the nexus between pulsing of reactants and power performance has yet to be established. This study introduces pulsing of reactants as a method of improving power...
Show morePulsing the flow of reactants in proton exchange membrane fuel cells (PEMFC) is a new frontier in the area of fuel cell research. Although power performance losses resulting from water accumulation also referred to as flooding, and power performance recovery resulting from water removal or purging, have been studied and monitored, the nexus between pulsing of reactants and power performance has yet to be established. This study introduces pulsing of reactants as a method of improving power performance. This study investigates how under continuous supply of reactants, pressure increase due to water accumulation, and power performance decay in PEMFCs. Furthermore, this study shows that power performance can be optimized through pulsing of reactants, and it investigates several variables affecting the power production under these conditions. Specifically, changes in frequency, duty cycle, and shifting of reactants as they affect performance are monitored and analyzed. Advanced data acquisition and control software allow multi-input monitoring of thermo-fluid and electrical data, while analog and digital controllers make it possible to implement optimization techniques for both discrete and continuous modes.
Show less - Date Issued
- 2009
- PURL
- http://purl.flvc.org/FAU/367764
- Subject Headings
- Proton exchange membrane fuel cells, Reliability, Fuel cells, Reliability, Renewable energy sources
- Format
- Document (PDF)
- Title
- Solar cell degradation under ionizing radiation ambient: preemptive testing and evaluation via electrical overstressing.
- Creator
- Thengum Pallil, George A., College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
The efforts addressed in this thesis refer to assaying the degradations in modern solar cells used in space-borne and/or nuclear environment applications. This study is motivated to address the following: 1. Modeling degradations in Si pn-junction solar cells (devices-under-test or DUTs) under different ionizing radiation dosages 2. Preemptive and predictive testing to determine the aforesaid degradations that decide eventual reliability of the DUTs; and 3. Using electrical overstressing (EOS...
Show moreThe efforts addressed in this thesis refer to assaying the degradations in modern solar cells used in space-borne and/or nuclear environment applications. This study is motivated to address the following: 1. Modeling degradations in Si pn-junction solar cells (devices-under-test or DUTs) under different ionizing radiation dosages 2. Preemptive and predictive testing to determine the aforesaid degradations that decide eventual reliability of the DUTs; and 3. Using electrical overstressing (EOS) to emulate the fluence of ionizing radiation dosage on the DUT. Relevant analytical methods, computational efforts and experimental studies are described. Forward/reverse characteristics as well as ac impedance performance of a set of DUTs under pre- and post- electrical overstressings are evaluated. Change in observed DUT characteristics are correlated to equivalent ionizing-radiation dosages. The results are compiled and cause-effect considerations are discussed. Conclusions are enumerated and inferences are made with direction for future studies.
Show less - Date Issued
- 2010
- PURL
- http://purl.flvc.org/FAU/2979384
- Subject Headings
- Renewable energy sources, Solar cells, Effect of radiation on, Reliability (Engineering), Electric discharges, Ionizing radiation
- Format
- Document (PDF)
- Title
- Study of high temperature PEM fuel cell (HT-PEMFC) waste heat recovery through ejector based refrigeration.
- Creator
- Fuchs, Michel., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The incorporation of an ejector refrigeration cycle with a high temperature PEM fuel cell (HT-PEMFC) presents a novel approach to combined heat and power (CHP) applications. An ejector refrigeration system (ERS) can enhance the flexibility of a CHP system by providing an additional means of utilizing the fuel cell waste heat besides domestic hot water (DHW) heating. This study looks into the performance gains that can be attained by incorporating ejector refrigeration with HT-PEMFC micro-CHP ...
Show moreThe incorporation of an ejector refrigeration cycle with a high temperature PEM fuel cell (HT-PEMFC) presents a novel approach to combined heat and power (CHP) applications. An ejector refrigeration system (ERS) can enhance the flexibility of a CHP system by providing an additional means of utilizing the fuel cell waste heat besides domestic hot water (DHW) heating. This study looks into the performance gains that can be attained by incorporating ejector refrigeration with HT-PEMFC micro-CHP (mCHP) systems (1 to 5kWe). The effectiveness of the ERS in utilizing fuel cell waste heat is studied as is the relulting enhancement to overall system efficiency. A test rig specially constructed to evaluate an ERS under simulated HT-PEMFC conditions is used to test the concept and verify modeling predictions. In addition, two separate analytical models were constructed to simulate the ERS test rig and a HT-PEMFC/ERS mCHP system. The ERS test rig was simulated using a Matlab based model, while two residential sized HT-PEMFC/ERS mCHP systems were simulated using a Simulink model. Using U.S. Energy Information Administration (EIA) air conditioning and DHW load profiles, as well as data collected from a large residential monitoring study in Florida, the Simulink model provides the results in system efficiency gain associated with supporting residential space cooling and water heating loads. It was found that incorporation of an ERS increased the efficiency of a HT-PEMFC mCHP system by 8 t0 10 percentage points over just using the fuel cell waste heat for DHW. In addition, results from the Matlab ERS test rig model were shown to match well with experimental results.
Show less - Date Issued
- 2012
- PURL
- http://purl.flvc.org/FAU/3355557
- Subject Headings
- Proton exchange membrane fuel cells, Fuel cells, Mathematical models, Heat exchangers, Design and construction, Renewable energy sources
- Format
- Document (PDF)
- Title
- Environmental siting suitability analysis for commercial scale ocean renewable energy: a southeast Florida case study.
- Creator
- Mulcan, Amanda, Hanson, Howard P., Hindle, Tobin, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Geosciences
- Abstract/Description
-
This thesis aims to facilitate the siting and implementation of Florida Atlantic University Southeast National Marine Renewable Energy Center (FAU SNMREC) ocean current energy (OCE) projects offshore southeastern Florida through the analysis of benthic anchoring conditions. Specifically, a suitability analysis considering all presently available biologic and geologic datasets within the legal framework of OCE policy and regulation was done. OCE related literature sources were consulted to...
Show moreThis thesis aims to facilitate the siting and implementation of Florida Atlantic University Southeast National Marine Renewable Energy Center (FAU SNMREC) ocean current energy (OCE) projects offshore southeastern Florida through the analysis of benthic anchoring conditions. Specifically, a suitability analysis considering all presently available biologic and geologic datasets within the legal framework of OCE policy and regulation was done. OCE related literature sources were consulted to assign suitability levels to each dataset, ArcGIS interpolations generated seafloor substrate maps, and existing submarine cable pathways were considered for OCE power cables. The finalized suitability map highlights the eastern study area as most suitable for OCE siting due to its abundance of sand/sediment substrate, existing underwater cable route access, and minimal biologic presence. Higher resolution datasets are necessary to locate specific OCE development locales, better understand their benthic conditions, and minimize potentially negative OCE environmental impacts.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004220, http://purl.flvc.org/fau/fd/FA00004220
- Subject Headings
- Marine resources development -- Case studies, Ocean energy resources -- Environmental aspects -- Case studies, Ocean wave power -- Case studies, Renewable energy sources -- Environmental aspects -- Case studies
- Format
- Document (PDF)