Current Search: Reinforced concrete--Mechanical properties (x)
View All Items
- Title
- Corrosion Propagation of Rebar Embedded in High Performance Concrete.
- Creator
- Nazim, Manzurul, Presuel-Moreno, Francisco, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The FDOT has been using supplementary cementitious materials while constructing steel reinforced concrete marine bridge structures for over 3 decades. Previous findings indicated that such additions in concrete mix makes the concrete more durable. To better understand corrosion propagation of rebar in high performance concrete: mature concrete samples that were made (2008/2009) with Portland cement, a binary mix, a ternary mix and recently prepared (April 2016 with 50% OPC + 50% slag and 80%...
Show moreThe FDOT has been using supplementary cementitious materials while constructing steel reinforced concrete marine bridge structures for over 3 decades. Previous findings indicated that such additions in concrete mix makes the concrete more durable. To better understand corrosion propagation of rebar in high performance concrete: mature concrete samples that were made (2008/2009) with Portland cement, a binary mix, a ternary mix and recently prepared (April 2016 with 50% OPC + 50% slag and 80% OPC + 20% Fly ash) concrete samples were considered. None of these concretes had any admixed chloride to start with. An accelerated chloride transport process was used to drive chloride ions into the concrete so that chlorides reach and exceed thechloride threshold at the rebar surface and initiate corrosion. Electrochemical measurements were taken at regular intervals (during and after the electro-migration process) to observe the corrosion propagation in each sample.
Show less - Date Issued
- 2017
- PURL
- http://purl.flvc.org/fau/fd/FA00004941, http://purl.flvc.org/fau/fd/FA00004941
- Subject Headings
- Reinforced concrete--Corrosion., Reinforced concrete--Chemical resistance., Reinforced concrete--Deterioration., Concrete--Corrosion., Concrete--Mechanical properties.
- Format
- Document (PDF)
- Title
- SYNTHETIC FIBER REINFORCED CONCRETE PERFORMANCE AFTER PROLONGED ENVIRONMENTAL EXPOSURE UTILIZING THE MODIFIED INDIRECT TENSILE TEST.
- Creator
- Ellis, Spencer G., Presuel-Moreno, Francisco, Florida Atlantic University, Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science
- Abstract/Description
-
In order to study the mechanical performance of dry-cast synthetic fiber reinforced concrete (SynFRC), samples of varying geometry, fiber content, and environmental exposure were developed and tested using the modified indirect tensile test. The samples created consisted of three different thicknesses (with two different geometries), and six different fiber contents that differed in either type, or quantity, of fibers. Throughout the duration of this research, procedures for inflicting...
Show moreIn order to study the mechanical performance of dry-cast synthetic fiber reinforced concrete (SynFRC), samples of varying geometry, fiber content, and environmental exposure were developed and tested using the modified indirect tensile test. The samples created consisted of three different thicknesses (with two different geometries), and six different fiber contents that differed in either type, or quantity, of fibers. Throughout the duration of this research, procedures for inflicting detrimental materials into the concrete samples were employed at a number of different environments by implementing accelerated rates of deterioration using geometric adjustments, increased temperature exposure, wetting/drying cycles, and preparation techniques. The SynFRC samples studied were immersed in a wide range of environments including: the exposure of samples to high humidity and calcium hydroxide environments, which served at the control group, while the sea water, low pH, and barge conditioning environments were used to depict the real world environments similar to what would be experienced in the Florida ecosystem. As a result of this conditioning regime, the concrete was able to imitate the real-world effects that the environments would have inflicted if exposed for long durations after an exposure period of only 20-24 months. Having adequately conditioned the samples in their respective environments, they were then tested (and forensically investigated) using the modified indirect tensile testing method to gather data regarding each sample’s toughness and load handling capability. By analyzing the results from each sample, the toughness was calculated by taking the area under the force displacement curve. From these toughness readings it was found that possible degradation occurred between the fiber-matrix interface of some of the concrete samples conditioned in the Barge environment. From these specimens that were immersed in the barge environment, a handful of them exhibited multiple episodes of strain softening characteristics within their force displacement curves. In regard to the fibers used within the samples, the PVA fibers tended to pull off more while the Tuff Strand SF fibers had the highest tendency to break (despite some of the fibers showing similar pull off and breaking failure characteristics). When it comes to the overall thickness of the sample, there was clear correlation between the increase in size and the increase in sample toughness, however the degree to which it correlates varies from sample to sample.
Show less - Date Issued
- 2020
- PURL
- http://purl.flvc.org/fau/fd/FA00013466
- Subject Headings
- Reinforced concrete, Fiber-reinforced concrete--Testing, Reinforced concrete--Mechanical properties, Tensile Strength, Concrete—Environmental testing
- Format
- Document (PDF)