Current Search: Prestressed steel construction (x)
View All Items
- Title
- Effect of cathodic protection on bond strength between prestressing steel and concrete.
- Creator
- Ducrocq, Luc., Florida Atlantic University, Hartt, William H.
- Abstract/Description
-
A series of experiments was performed on prestressed concrete specimens for the purpose of studying the tendency of disbonding between the embedded steel and the concrete due to an impressed cathodic current. The procedure first involved impressing an anodic current until active potentials were recorded along the tendon length. Subsequently, cathodic polarization of the prestressed tendons was affected using a current density of 1 mA/cm^2. The strain variation of the concrete specimens was...
Show moreA series of experiments was performed on prestressed concrete specimens for the purpose of studying the tendency of disbonding between the embedded steel and the concrete due to an impressed cathodic current. The procedure first involved impressing an anodic current until active potentials were recorded along the tendon length. Subsequently, cathodic polarization of the prestressed tendons was affected using a current density of 1 mA/cm^2. The strain variation of the concrete specimens was monitored during these two procedures using gages placed on the top or bottom surface. It was found that for a current density of 1 mA/cm^2 during the 30 day monitoring period the concrete relaxed by an amount equivalent to an 80 percent loss of bond between the tendons and concrete. The implications of this with regard to cathodic protection of prestressed concrete structures and components in actual service are discussed.
Show less - Date Issued
- 1990
- PURL
- http://purl.flvc.org/fcla/dt/14591
- Subject Headings
- Prestressed steel construction, Prestressed concrete construction, Cathodic protection
- Format
- Document (PDF)
- Title
- Hydrogen embrittlement of cathodically protected prestressing steel.
- Creator
- Kliszowski, Stanislas Henri., Florida Atlantic University, Hartt, William H., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Cathodic protection is currently recognized as the most practical mean for arresting corrosion of reinforcing steel tendons in existing concrete structures, however, its appropriateness in the case of prestressed concrete is questioned because prestressing steels are relatively susceptible to environmental cracking (hydrogen embrittlement). For the purpose of studying embrittlement tendencies a series of experiments using the slow strain rate technique were performed. The susceptibility to...
Show moreCathodic protection is currently recognized as the most practical mean for arresting corrosion of reinforcing steel tendons in existing concrete structures, however, its appropriateness in the case of prestressed concrete is questioned because prestressing steels are relatively susceptible to environmental cracking (hydrogen embrittlement). For the purpose of studying embrittlement tendencies a series of experiments using the slow strain rate technique were performed. The susceptibility to environmental cracking was compared for different steels corresponding to ASTM grades 270 and 250 polarized at $-$900 and $-1300$ mV (SCE) in deaerated saturated Ca(OH)$\sb2$ solutions. The influence of different notch and pit geometries was studied to simulate the behavior of corroded tendons and investigate the transition between smooth and severely notched specimen behavior. Also evaluated was the evolution of the mechanical properties of tendons after excessive polarization. The different cracking processes are discussed based on test data, fractography and exposures conditions associated with concrete structures.
Show less - Date Issued
- 1994
- PURL
- http://purl.flvc.org/fcla/dt/14999
- Subject Headings
- Cathodic protection, Metals--Hydrogen embrittlement, Tendons (Prestressed concrete), Prestressed concrete--Deterioration, Prestressed steel construction
- Format
- Document (PDF)
- Title
- Embrittlement susceptibility of corroded pre-stressing steel in concrete during cathodic polarization.
- Creator
- Poeydomenge, Arnaud., Florida Atlantic University, Hartt, William H., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Experiments and analyses were performed to better define the limits of concern regarding hydrogen embrittlement in association with application of cathodic protection to prestressed concrete. To accomplish this, prestressed concrete specimens were locally corroded to different levels by anodic polarization and then polarized to -1.30 V SCE. A procedure of examination was developed using strain gauges to determine the level of prestrain. Relatively few brittle failures of wires resulted due,...
Show moreExperiments and analyses were performed to better define the limits of concern regarding hydrogen embrittlement in association with application of cathodic protection to prestressed concrete. To accomplish this, prestressed concrete specimens were locally corroded to different levels by anodic polarization and then polarized to -1.30 V SCE. A procedure of examination was developed using strain gauges to determine the level of prestrain. Relatively few brittle failures of wires resulted due, at least in part, to a relatively low prestrain of the pretensioned tendons. A model was developed which, coupled with data from parallel research, permitted definition of the minimum cross section for brittle failure as a function of the magnitude of prestrain and corrosion morphology of the wire. These results were tabulated in a format that can be used during field inspection to identify structural elements for which fracture could occur upon application of cathodic protection.
Show less - Date Issued
- 1997
- PURL
- http://purl.flvc.org/fcla/dt/15417
- Subject Headings
- Prestressed concrete--Corrosion, Cathodic protection, Prestressed concrete--Embrittlement, Prestressed steel construction
- Format
- Document (PDF)
- Title
- Static, fatigue and ultimate load behavior of bridges prestressed with advanced composite materials.
- Creator
- Sandepudi, Krishna Srinivasa., Florida Atlantic University, Arockiasamy, Madasamy, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
One of the major problems the construction industry faces today is low corrosion resistance of reinforcing and prestressing steel, which significantly affects the durability of concrete structures. Theoretically Advanced Composite Materials (ACM) can successfully be used in concrete structures, in lieu of steel, as reinforcing and/or prestressing elements, owing to high tensile strength, immunity towards corrosion, low Young's modulus, light weight and high fatigue resistance. Very little...
Show moreOne of the major problems the construction industry faces today is low corrosion resistance of reinforcing and prestressing steel, which significantly affects the durability of concrete structures. Theoretically Advanced Composite Materials (ACM) can successfully be used in concrete structures, in lieu of steel, as reinforcing and/or prestressing elements, owing to high tensile strength, immunity towards corrosion, low Young's modulus, light weight and high fatigue resistance. Very little experimental and performance data are available on the properties of ACM and their application in concrete structures. Thus, to ensure safety of the structures, accurate assessment and continuous performance monitoring of the ACM together with the structure have to be made with an option of active and/or passive structural control. This investigation is aimed to establish the feasibility of using Aramid Fiber Reinforced Plastic (AFRP) cables as reinforcing/prestressing elements in concrete bridge structures. Besides investigating the durability of the AFRP cables in adverse environments (alkali and seawater), static and ultimate load tests were performed on a Double-Tee beam and three rectangular beams together with static, fatigue and ultimate load tests on a half scale model Double-Tee bridge system prestressed with AFRP. The AFRP specimens exposed to alkali and seawater for 900 hours retained 88% of the average failure strength of control specimens. Large deformations at ultimate conditions and good fatigue resistance were observed in the experimental studies. A computer code, FRPFLEX, was developed to perform flexural analysis of beams prestressed/reinforced with the ACM. An incremental, stiffness augmented non-linear analysis was performed using grillage analogy to assess static flexural behavior of Double-Tee bridge system. Analytical results showed good correlation with experimental findings. An active deformation/vibration control model is suggested, which can be incorporated in prototype bridges for safety and performance data evaluation. Feasibility of the use of the AFRP cables in bridge structures is assessed based on the experimental and analytical parameters such as deflections, strains, crack distributions, crack widths and energy considerations.
Show less - Date Issued
- 1995
- PURL
- http://purl.flvc.org/fcla/dt/12414
- Subject Headings
- Prestressed concrete construction, Steel--Fatigue, Bridges--Fatigue, Fiber reinforced plastics
- Format
- Document (PDF)
- Title
- Feasibility of using carbon fiber reinforced plastic tendons in prestressed concrete Double-Tee bridge system.
- Creator
- Zhuang, Ming., Florida Atlantic University, Arockiasamy, Madasamy, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
One of the major problems the construction industry faces today is corrosion of reinforcing and prestressing steel, which significantly affects the durability of concrete structures. Fiber reinforced plastics (FRPs) are highly regarded as prospective replacement for steel in prestressed concrete structures under corrosive environment. This investigation was conducted to establish the feasibility of using Carbon Fiber Composite (CFC) cables as reinforcing/prestressing elements in concrete...
Show moreOne of the major problems the construction industry faces today is corrosion of reinforcing and prestressing steel, which significantly affects the durability of concrete structures. Fiber reinforced plastics (FRPs) are highly regarded as prospective replacement for steel in prestressed concrete structures under corrosive environment. This investigation was conducted to establish the feasibility of using Carbon Fiber Composite (CFC) cables as reinforcing/prestressing elements in concrete bridge structures. Besides investigating durability of CFC cables and pretensioned concrete beams with CFC cables in adverse environments (alkali and seawater), flexure and shear tests were performed on single Double-Tee beams, together with service load behavior, fatigue strength and ultimate load capacity tests on a half scale model Double-Tee girder bridge system prestressed with CFC cables. Exposure to seawater and alkali environments has no adverse effect on the strength of the CFRP tendons as well as the pretensioned beams with CFRP. Based on the flexural strength tests on Double-Tee beams, the bond between CFRP tendons and concrete is satisfactory. The Double-Tee bridge system exhibited good fatigue resistance and adequate ductility under ultimate load conditions. The ultimate load capacity of the bridge is approximately three times the service load corresponding to two HS20-44 trucks and equals 2.4 times the first crack load. Finite element analyses were carried out to predict elastic deformations and collapse load of the Double-Tee bridge prestressed with CFC cables. Feasibility of using CFC cables in bridge structures is assessed based on the experimental and analytical parameters such as deflections, strains, crack distributions and crack widths.
Show less - Date Issued
- 1996
- PURL
- http://purl.flvc.org/fcla/dt/12465
- Subject Headings
- Carbon fibers, Composite construction, Fiber reinforced plastics, Bridges, Iron and steel, Reinforced concrete construction, Prestressed concrete construction
- Format
- Document (PDF)