Current Search: Pore water (x)
-
-
Title
-
A portable non-contaminating sampling system for iron and manganese in sediment pore water.
-
Creator
-
Montgomery, John R., Hucks, Michael W., Peterson, Gary N., Harbor Branch Oceanographic Institute
-
Date Issued
-
1985
-
PURL
-
http://purl.flvc.org/fau/fd/FA00007488
-
Subject Headings
-
Pore water, Sediment, Sampling, Iron, Manganese
-
Format
-
Document (PDF)
-
-
Title
-
Diel variations of dissolved ammonia and phosphate in estaurine sediment pore water.
-
Creator
-
Montgomery, John R., Zimmermann, Carl F., Peterson, Gary N., Price, Mary T., Harbor Branch Oceanographic Institute
-
Date Issued
-
1983
-
PURL
-
http://purl.flvc.org/fau/fd/FA00007476
-
Subject Headings
-
Estuarine sediments, Pore water, Ammonia, Phosphates
-
Format
-
Document (PDF)
-
-
Title
-
SUSCEPTIBILITY OF RECRUITING SEAGRASS (THALASSIA TESTUDINUM) TO POREWATER H2S IN FLORIDA BAY.
-
Creator
-
MacLeod, Kasey, Koch, Marguerite, Florida Atlantic University, Department of Biological Sciences, Charles E. Schmidt College of Science
-
Abstract/Description
-
This study investigated the influence of high concentrations of porewater H2S (~100 μM) on recruitment of the tropical dominant seagrass species, Thalassia testudinum, following mortality events or "die-offs" in Florida Bay. Major seagrass die-off events (>50 km2) are occurring globally in coastal regions with mortality frequently linked to hypoxia and sediment-derived hydrogen sulfide (H2S) exposure, a well-known phytotoxin. In tropical carbonate environments, such as Florida Bay, low iron...
Show moreThis study investigated the influence of high concentrations of porewater H2S (~100 μM) on recruitment of the tropical dominant seagrass species, Thalassia testudinum, following mortality events or "die-offs" in Florida Bay. Major seagrass die-off events (>50 km2) are occurring globally in coastal regions with mortality frequently linked to hypoxia and sediment-derived hydrogen sulfide (H2S) exposure, a well-known phytotoxin. In tropical carbonate environments, such as Florida Bay, low iron in sediments promote H2S accumulation and subsequent intrusion into seagrass meristematic tissue through roots, and root-shoot junctions. While H2S intrusion into meristematic tissue is a leading hypothesis for large-scale seagrass mortality events, it is less clear if H2S contributes to a decline in seagrass recruitment following large-scale seagrass die-off events. Herein, I examined tissue stable sulfur isotope signatures (d34S), belowground tissue biomass partitioning, and internal O2/H2S dynamics of newly recovering shoots over seasons at a western Florida Bay site with recurrent die-off events. Tissue results showed less H2S accumulation in tissue samples of shoots recruiting into bare sediment patches compared to tissue samples from adjacent T. testudinum and H. wrightii seagrass meadows. Additionally, internal gas dynamics of recruits showed high pO2 during the day, and no detection of meristematic H2S intrusion, despite meristem hypoxia for several hours during the night. Recruiting shoots consistently have low root biomass, likely contributing to a lack of meristem H2S intrusion, as young, minimally developed, or lack of roots in recruiting shoots limit H2S intrusion. These results lead me to suggest that high H2S levels in porewater of western Florida Bay does not limit T. testudinum recruitment into open bare patches following major die-off events, supported by the recovery, albeit slow, of this species based long-term monitoring of seagrass in the Bay.
Show less
-
Date Issued
-
2022
-
PURL
-
http://purl.flvc.org/fau/fd/FA00014030
-
Subject Headings
-
Thalassia testudinum, Seagrasses, Hydrogen sulfide, Pore water
-
Format
-
Document (PDF)
-
-
Title
-
A close-interval sampler for collection of sediment pore waters for nutrient analyses.
-
Creator
-
Montgomery, John R., Price, Mary T., Holt, John K., Zimmermann, Carl F., Harbor Branch Oceanographic Institute
-
Date Issued
-
1981
-
PURL
-
http://purl.flvc.org/FCLA/DT/3174219
-
Subject Headings
-
Nutrient pollution of water, Water --Sampling, Pore water, Sediment
-
Format
-
Document (PDF)
-
-
Title
-
Pore water chemistry of an overwash mangrove island.
-
Creator
-
Carlson, Paul R., Yarbro, Laura A., Zimmermann, Carl F., Montgomery, John R., Harbor Branch Oceanographic Institute
-
Date Issued
-
1983
-
PURL
-
http://purl.flvc.org/fau/fd/FA00007481
-
Subject Headings
-
Pore water--Florida--Indian River, Mangroves, Sediment
-
Format
-
Document (PDF)
-
-
Title
-
A comparison of ceramic cup and Teflon in situ samplers for nutrient pore water determinations.
-
Creator
-
Zimmermann, Carl F., Price, Mary T., Montgomery, John R., Harbor Branch Oceanographic Institute
-
Date Issued
-
1978
-
PURL
-
http://purl.flvc.org/FCLA/DT/3174478
-
Subject Headings
-
Estuaries, Estuarine sediments, Nutrient pollution of water, Water --Sampling, Pore water
-
Format
-
Document (PDF)
-
-
Title
-
The collection, analysis and variation of nutrients in estuarine pore water.
-
Creator
-
Montgomery, John R., Zimmermann, Carl F., Price, Mary T., Harbor Branch Oceanographic Institute
-
Date Issued
-
1979
-
PURL
-
http://purl.flvc.org/FCLA/DT/3174480
-
Subject Headings
-
Estuaries, Estuarine sediments, Nutrient pollution of water, Pore water, Mud flat ecology
-
Format
-
Document (PDF)
-
-
Title
-
Uptake of dissolved sulfide by Spartina alterniflora: evidence from natural sulfur isotope abundance ratios.
-
Creator
-
Carlson, Paul R., Forrest, J., Harbor Branch Oceanographic Institute
-
Date Issued
-
1982
-
PURL
-
http://purl.flvc.org/fau/fd/FA00007057
-
Subject Headings
-
Spartina alterniflora, Salt marshes, Sulfides, Sulfate, Pore water, Sulfur--Isotopes, Halophytes
-
Format
-
Document (PDF)
-
-
Title
-
Effects of a decomposing drift algal mat on sediment pore water nutrient concentrations in a Florida seagrass bed.
-
Creator
-
Zimmermann, Carl F., Montgomery, John R., Harbor Branch Oceanographic Institute
-
Date Issued
-
1984
-
PURL
-
http://purl.flvc.org/FCLA/DT/3350848
-
Subject Headings
-
Seagrasses, Pore water --Florida --Indian River, Algae --Ecology, Sediment control, Ammonium, Phosphate deposits
-
Format
-
Document (PDF)