Current Search: Polymeric composites -- Mechanical properties (x)
View All Items
- Title
- Determination of the tensile strength of the fiber/matrix interface for glass/epoxy & carbon/vinylester.
- Creator
- Totten, Kyle, Carlsson, Leif A., Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The tensile strength of the fiber/matrix interface was determined through the development of an innovativetest procedure.Aminiature tensile coupon with a through-thickness oriented, embedded single fiberwas designed. Tensile testing was conducted ina scanning electron microscope (SEM)while the failure process could be observed.Finite element stress analysis was conducted to determine the state of stressat the fiber/matrix interface in the tensile loaded specimen, and the strength of the...
Show moreThe tensile strength of the fiber/matrix interface was determined through the development of an innovativetest procedure.Aminiature tensile coupon with a through-thickness oriented, embedded single fiberwas designed. Tensile testing was conducted ina scanning electron microscope (SEM)while the failure process could be observed.Finite element stress analysis was conducted to determine the state of stressat the fiber/matrix interface in the tensile loaded specimen, and the strength of the interface.Test specimensconsistingof dry E-glass/epoxy and dry and seawater saturatedcarbon/vinylester510Awere preparedand tested.The load at the onset of debondingwascombined withthe radial stressdistributionnear thefree surface of the specimento reducethe interfacial tensile strength. For glass/epoxy, was 36.7±8.8MPa.For the dryand seawater saturated carbon/vinylester specimensthetensilestrengthsof the interface were 23.0±6.6 and 25.2±4.1MPa, respectively.The difference is not significant.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004415, http://purl.flvc.org/fau/fd/FA00004415
- Subject Headings
- Composite materials -- Mechanical properties, Composite materials -- Testing, Fibrous composites -- Mechanical properties, Polymeric composites -- Mechanical properties, Viscoelasticity
- Format
- Document (PDF)
- Title
- Mechanical properties of fiber-reinforced polymer (FRP) composites for concrete bridge deck reinforcement.
- Creator
- Manav, Mukbil Ozan., Florida Atlantic University, Arockiasamy, Madasamy, College of Engineering and Computer Science, Department of Civil, Environmental and Geomatics Engineering
- Abstract/Description
-
Durability of concrete bridge decks reinforced with conventional structural steel is a major concern in aggressive environments. To address this problem, there have been efforts, in recent years, to develop and evaluate alternatives to conventional steel. One alternative is fiber reinforced polymer (FRP) composite reinforcement. FRP composites have been used successfully in many industrial applications. This thesis investigates short-term mechanical properties of FRP rebars as reinforcement...
Show moreDurability of concrete bridge decks reinforced with conventional structural steel is a major concern in aggressive environments. To address this problem, there have been efforts, in recent years, to develop and evaluate alternatives to conventional steel. One alternative is fiber reinforced polymer (FRP) composite reinforcement. FRP composites have been used successfully in many industrial applications. This thesis investigates short-term mechanical properties of FRP rebars as reinforcement for concrete bridge decks and discusses results of extensive laboratory tests. Four test methods (tension, flexure, shear and bond) are developed and test protocols are proposed for adoption by AASHTO.
Show less - Date Issued
- 2002
- PURL
- http://purl.flvc.org/fcla/dt/12988
- Subject Headings
- Fibrous composites--Mechanical properties, Polymeric composites, Reinforced concrete, Fiber
- Format
- Document (PDF)
- Title
- Effects of Carbon Nanotube (CNT) Dispersion and Interface Condition on Thermo-Mechanical Behavior of CNT-Reinforced Vinyl Ester.
- Creator
- Sabet, Seyed Morteza, Mahfuz, Hassan, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
In fabrication of nanoparticle-reinforced polymers, two critical factors need to be taken into account to control properties of the final product; nanoparticle dispersion/distribution in the matrix; and interfacial interactions between nanoparticles and their surrounding matrix. The focus of this thesis was to examine the role of these two factors through experimental methodologies and molecular-level simulations. Carbon nanotubes (CNTs) and vinyl ester (VE) resin were used as nanoparticles...
Show moreIn fabrication of nanoparticle-reinforced polymers, two critical factors need to be taken into account to control properties of the final product; nanoparticle dispersion/distribution in the matrix; and interfacial interactions between nanoparticles and their surrounding matrix. The focus of this thesis was to examine the role of these two factors through experimental methodologies and molecular-level simulations. Carbon nanotubes (CNTs) and vinyl ester (VE) resin were used as nanoparticles and matrix, respectively. In a parametric study, a series of CNT/VE nanocomposites with different CNT dispersion conditions were fabricated using the ultrasonication mixing method. Thermomechanical properties of nanocomposites and quality of CNT dispersion were evaluated. By correlation between nanocomposite behavior and CNT dispersion, a thermomechanical model was suggested; at a certain threshold level of sonication energy, CNT dispersion would be optimal and result in maximum enhancement in properties. This threshold energy level is also related to particle concentration. Sonication above this threshold level, leads to destruction of nanotubes and renders a negative effect on the properties of nanocomposites. In an attempt to examine the interface condition, a novel process was developed to modify CNT surface with polyhedral oligomeric silsesquioxane (POSS). In this process, a chemical reaction was allowed to occur between CNTs and POSS in the presence of an effective catalyst. The functionalized CNTs were characterized using TEM, SEM-EDS, AFM, TGA, FTIR and Raman spectroscopy techniques. Formation of amide bonds between POSS and nanotubes was established and verified. Surface modification of CNTs with POSS resulted in significant improvement in nanotube dispersion. In-depth SEM analysis revealed formation of a 3D network of well-dispersed CNTs with POSS connections to the polymer. In parallel, molecular dynamics simulation of CNT-POSS/VE system showed an effective load transfer from polymer chains to the CNT due to POSS linkages at the interface. The rigid and flexible network of CNTs is found to be responsible for enhancement in elastic modulus, strength, fracture toughness and glass transition temperature (Tg) of the final nanocomposites.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004628, http://purl.flvc.org/fau/fd/FA00004628
- Subject Headings
- Carbon nanotubes., Carbon composites., Polymeric composites., Fibrous composites, Nanostructured materials., Composite materials--Mechanical properties.
- Format
- Document (PDF)
- Title
- Durability of carbon fiber/vinylester composites subjected to marine environments and electrochemical interactions.
- Creator
- Hasnine, Md., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Degradation of the Carbon Fiber/Vinylester (CF/VE) polymer matrix composites due to different electrochemical interactions when exposed to seawater or at high temperature had been experimentally investigated. Water uptake behavior of composite specimen was examined based on weight gain measurement. Three point bending test was performed to quantify the mechanical degradation of composite immersed in seawater with different environmental and electrochemical interactions. Finally,...
Show moreDegradation of the Carbon Fiber/Vinylester (CF/VE) polymer matrix composites due to different electrochemical interactions when exposed to seawater or at high temperature had been experimentally investigated. Water uptake behavior of composite specimen was examined based on weight gain measurement. Three point bending test was performed to quantify the mechanical degradation of composite immersed in seawater with different environmental and electrochemical interactions. Finally, Electrochemical Impedance Spectroscopy (EIS) was used to better understanding of the degradation process in CF/VE composite produced by interactions between electrochemical and different environmental conditions. A detailed equivalent circuit analysis by using EIS spectra is also presented in an attempt to elucidate the degradation phenomenon in composites.
Show less - Date Issued
- 2010
- PURL
- http://purl.flvc.org/FAU/2683124
- Subject Headings
- Composite materials, Mechanical properties, Fibrous composites, Structural analysis, Polymeric composites, Spectrum analysis
- Format
- Document (PDF)
- Title
- Evaluation of Water Degradation ofPolymer Matrix Composites by Micromechanical and Macromechanical Tests.
- Creator
- Ramirez, Felipe A., Carlsson, Leif A., Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Degradation of the critical components of polymer matrix composites in marine environments had been experimentally investigated. Water absorption behavior of neat resin and composite specimens was examined. The tensile strength of fibers was monitored using the single filament test. The mechanical properties of the resins were monitored by tensile, flexure, and dynamic-mechanical tests. In addition, matrix shrinkage during cure and matrix swelling after immersion in water were monitored. The...
Show moreDegradation of the critical components of polymer matrix composites in marine environments had been experimentally investigated. Water absorption behavior of neat resin and composite specimens was examined. The tensile strength of fibers was monitored using the single filament test. The mechanical properties of the resins were monitored by tensile, flexure, and dynamic-mechanical tests. In addition, matrix shrinkage during cure and matrix swelling after immersion in water were monitored. The integrity of the fiber/matrix (F/M) interface of the composite systems was studied using the single fiber fragmentation test (SFFT). Macroscopic composites were examined using transverse tensile and transverse flexure tests to study the influence of the integrity of the matrix and F/M interface on the macroscopic response. In addition, for characterization of F/M debonding in the SFFT, a fracture mechanics model and modified test procedure were developed.
Show less - Date Issued
- 2008
- PURL
- http://purl.flvc.org/fau/fd/FA00012543
- Subject Headings
- Composite materials--Mechanical properties, Polymeric composites--Testing, Fibrous composites--Testing, Polymers--Deterioration
- Format
- Document (PDF)