Current Search: Ocean waves (x)
View All Items
Pages
- Title
- EXCITATION OF EDGE WAVES BY WAVES OBLIQUELY INCIDENT UPON A BEACH.
- Creator
- CHANG, YUH-HUEI., Florida Atlantic University, Lin, Newman K.
- Abstract/Description
-
Edge waves are the longshore periodic wave motions that are trapped at the edge of water bodies and play an important role in coastal hydrodynamics. This study presents the experimental investigation of the excitation of synchronous edge waves by waves normally and obliquely incident on a uniformly sloping beach. The experimental results show that the edge wave amplitude is linearly proportional to that of the reflected waves. For a perfectly reflecting beach, the conclusion is consistent...
Show moreEdge waves are the longshore periodic wave motions that are trapped at the edge of water bodies and play an important role in coastal hydrodynamics. This study presents the experimental investigation of the excitation of synchronous edge waves by waves normally and obliquely incident on a uniformly sloping beach. The experimental results show that the edge wave amplitude is linearly proportional to that of the reflected waves. For a perfectly reflecting beach, the conclusion is consistent with the Rockliff model. The experimental results also indicate that the ratio of the edge wave amplitude to reflected amplitude is linearly proportional to the approach angle.
Show less - Date Issued
- 1987
- PURL
- http://purl.flvc.org/fcla/dt/14380
- Subject Headings
- Ocean waves, Hydrodynamics
- Format
- Document (PDF)
- Title
- EXCITATION OF EDGE WAVES ON AN EXPONENTIAL BEACH.
- Creator
- LIU, JONG-YU., Florida Atlantic University, Lin, Newman K., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Edge waves are the longshore, trapped waves; their amplitude diminishes exponentially seaward from the shoreline. Ursell [1] has shown that there is a family of edge wave solutions of the shallow water equations, and Ball [2] provided a normal mode solution for the exponential beach. This study investigated, experimentally, the excitation of edge waves on a concave exponential beach by waves normally incident on the beach. The experimental investigation included the study of edge wave...
Show moreEdge waves are the longshore, trapped waves; their amplitude diminishes exponentially seaward from the shoreline. Ursell [1] has shown that there is a family of edge wave solutions of the shallow water equations, and Ball [2] provided a normal mode solution for the exponential beach. This study investigated, experimentally, the excitation of edge waves on a concave exponential beach by waves normally incident on the beach. The experimental investigation included the study of edge wave frequency, amplitude and particle motions. The results indicated that resonance occurs under suitable conditions for edge wave excitation. Viscosity, nonlinearity and defraction at the beach sidewalls reduced agreement between experiments and theory. The effects of these parameters on edge waves should be explored in more detail in further research.
Show less - Date Issued
- 1985
- PURL
- http://purl.flvc.org/fcla/dt/14280
- Subject Headings
- Ocean waves--Analysis
- Format
- Document (PDF)
- Title
- Design of an active sonar for measuring bubble clouds under breaking waves.
- Creator
- Quant, Roberta Wendy., Florida Atlantic University, Glegg, Stewart A. L., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
This thesis describes an active sonar mounted to an Autonomous Underwater Vehicle (AUV) for measuring bubble clouds below breaking waves. A new development is the application of a very broadband sonar signal-processing scheme for the sonar. It is shown that using the active sonar on an Autonomous Underwater Vehicle provides reliable data and that good results are obtained by using a correlation processor. This thesis describes the optimum processing procedure for this application, resolution,...
Show moreThis thesis describes an active sonar mounted to an Autonomous Underwater Vehicle (AUV) for measuring bubble clouds below breaking waves. A new development is the application of a very broadband sonar signal-processing scheme for the sonar. It is shown that using the active sonar on an Autonomous Underwater Vehicle provides reliable data and that good results are obtained by using a correlation processor. This thesis describes the optimum processing procedure for this application, resolution, and signal to noise constraints. Experimental results are given which show that bubbles can be imaged using an active sonar from an AUV platform. It was shown in the experimental results that the additive and the multiplicative processing produced good results for different situations. The multiplicative procedure was more consistent in the identification of bubble clouds than the additive process. One could see from the multiplicative images for the sea experiment where the bubble clouds were located while in the additive images one could only tell that a bubble cloud was identified.
Show less - Date Issued
- 2000
- PURL
- http://purl.flvc.org/fcla/dt/15792
- Subject Headings
- Sonar, Bubbles, Ocean waves
- Format
- Document (PDF)
- Title
- EXPERIMENTAL INVESTIGATION ON WAVE BREAKING AND TRANSMISSION IN SUBMERGED ARTIFICIAL REEFS.
- Creator
- Raju, Rahul Dev, Arockiasamy, Madasamy, Florida Atlantic University, Department of Civil, Environmental and Geomatics Engineering, College of Engineering and Computer Science
- Abstract/Description
-
Artificial reefs are coastal structures built to improve marine life and prevent beach erosion. During earlier days artificial reefs were constructed for recreational fishing using discarded scraps and waste materials. Later on, ships were scuttled for constructing artificial reefs. Artificial reefs dissipate the energy of the wave by making the wave break over the reef. The artificial reefs used for coastal protection are usually in submerged condition as this condition does not affect the...
Show moreArtificial reefs are coastal structures built to improve marine life and prevent beach erosion. During earlier days artificial reefs were constructed for recreational fishing using discarded scraps and waste materials. Later on, ships were scuttled for constructing artificial reefs. Artificial reefs dissipate the energy of the wave by making the wave break over the reef. The artificial reefs used for coastal protection are usually in submerged condition as this condition does not affect the aesthetic beauty of the beach. Wave transmission decides the efficiency of submerged-detached artificial reef in protecting the beach from the incoming waves. The efficiency of submerged detached coastal protection structures in protecting the beach is usually measured in terms of wave transmission coefficient. The experimental investigation in the present study is carried out for submerged two-dimensional impermeable and permeable reefs for three water depths. The crest width of the reefs considered for the experimental studies are 60 cm and 20 cm. The permeable artificial reefs are made up of oyster shells in Nylon bags and biodegradable bags. The water levels considered for the study are 35 cm, 34 cm, and 33 cm. The effect of pore space between the oyster shells, crest width, water depth and wave parameters on the wave transmission coefficient for submerged impermeable and permeable artificial reefs are studied experimentally. The wave transmission coefficient is calculated for submerged impermeable and permeable reefs for different water levels and crest widths. Based on the results of the present experimental studies, it is logical to conclude that both submerged impermeable and permeable artificial reefs contribute to a significant extent to the attenuation of the incident wave.
Show less - Date Issued
- 2023
- PURL
- http://purl.flvc.org/fau/fd/FA00014241
- Subject Headings
- Artificial reefs, Water waves, Ocean waves
- Format
- Document (PDF)
- Title
- Effect of wind on near-shore breaking waves.
- Creator
- Schaffer, Faydra., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The aim of this project is to identify the effect of wind on near-shore breaking waves. A breaking wave was created using a simulated beach slope configuration. Testing was done on two different beach slope configurations. The effect of offshore winds of varying speeds was considered. Waves of various frequencies and heights were considered. A parametric study was carried out. The experiments took place in the Hydrodynamics lab at FAU Boca Raton campus. The experimental data validates the...
Show moreThe aim of this project is to identify the effect of wind on near-shore breaking waves. A breaking wave was created using a simulated beach slope configuration. Testing was done on two different beach slope configurations. The effect of offshore winds of varying speeds was considered. Waves of various frequencies and heights were considered. A parametric study was carried out. The experiments took place in the Hydrodynamics lab at FAU Boca Raton campus. The experimental data validates the knowledge we currently know about breaking waves. Offshore winds effect is known to increase the breaking height of a plunging wave, while also decreasing the breaking water depth, causing the wave to break further inland. Offshore winds cause spilling waves to react more like plunging waves, therefore increasing the height of the spilling wave while consequently decreasing the breaking water depth.
Show less - Date Issued
- 2010
- PURL
- http://purl.flvc.org/FAU/2979378
- Subject Headings
- Wave motion, Theory of, Ocean waves, Climatology, Computational fluid dynamics
- Format
- Document (PDF)
- Title
- MATHEMATICAL MODELING OF CRAFT DRIFT IN AN OCEAN ENVIRONMENT.
- Creator
- KANG, SIN YOUNG., Florida Atlantic University, Su, Tsung-Chow, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
A mathematical model, which accounts for the essential effects of environmental loads and vehicle characteristics from a fluid dynamics point of view, is developed to forecast the position of a craft drifting on the sea surface. The study is intended to provide a better understanding of the dynamics of drift and thus to provide a reliable model of drift prediction for use in future search and rescue mission. In the mathematical formulation, three degrees of freedom (surge, sway and yaw) of a...
Show moreA mathematical model, which accounts for the essential effects of environmental loads and vehicle characteristics from a fluid dynamics point of view, is developed to forecast the position of a craft drifting on the sea surface. The study is intended to provide a better understanding of the dynamics of drift and thus to provide a reliable model of drift prediction for use in future search and rescue mission. In the mathematical formulation, three degrees of freedom (surge, sway and yaw) of a craft are analyzed, since they play the most significant role in the drift prediction problem. The governing equations of motions are derived from Newton's law of dynamics and the environmental loads considered are the forces and moments exerted by wind, current and waves. The forces are analyzed in terms of drag, lift, and inertial forces. The moments are obtained by summing the contribution from the above forces. For the computation of the wind loads, the wind gradient as well as craft geometry is accounted for. In the current loads, profile, friction and propeller drags are included. The wave forces are computed by the use of wave spectral density. The formulation includes the effects of craft rotation as well as craft translation. A computer algorithm for the mathematical model is implemented to obtain the numerical result in the time domain. The model is verified by comparing its result with field measurements. For this purpose, a field test was carried out. The agreement between the computed and field measured drift path was excellent. The real time prediction capability of the model was ascertained.
Show less - Date Issued
- 1987
- PURL
- http://purl.flvc.org/fcla/dt/11894
- Subject Headings
- Ships--Hydrodynamics--Mathematical models, Ocean waves
- Format
- Document (PDF)
- Title
- Numerical Simulation of Marine Hydrokinetic Turbines in Realistic Operating Conditions.
- Creator
- Dunlap, Broc, VanZwieten, James, Florida Atlantic University, Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science
- Abstract/Description
-
Marine Hydrokinetic (MHK) energy is an alternative to address the demand for cleaner energy sources. This study advanced numerical modeling tools and uses these to evaluate the performance of both a Tidal Turbine (TT) and an Ocean Current Turbine (OCT) operating in a variety of conditions. Inflow models are derived with current speeds ranging from 1.5 to 3 m/s and Turbulence Intensities (TI) of 5-15% and integrated into a TT simulation. An OCT simulation representing a commercial scale 20 m...
Show moreMarine Hydrokinetic (MHK) energy is an alternative to address the demand for cleaner energy sources. This study advanced numerical modeling tools and uses these to evaluate the performance of both a Tidal Turbine (TT) and an Ocean Current Turbine (OCT) operating in a variety of conditions. Inflow models are derived with current speeds ranging from 1.5 to 3 m/s and Turbulence Intensities (TI) of 5-15% and integrated into a TT simulation. An OCT simulation representing a commercial scale 20 m diameter turbine moored to the seafloor via underwater cable is enhanced with the capability to ingest Acoustic Doppler Current Profiler (ADCP) data and simulate fault conditions. ADCP measurements collected off the coast of Ft. Lauderdale during Hurricanes Irma and Maria were post-processed and used to characterize the OCT performance. In addition, a set of common faults were integrated into the OCT model to assess the system response in fault-induced scenarios.
Show less - Date Issued
- 2022
- PURL
- http://purl.flvc.org/fau/fd/FA00013962
- Subject Headings
- Turbines, Ocean wave power, Simulations, Mathematical models
- Format
- Document (PDF)
- Title
- Low frequency nearshore current fluctuations on Florida’s central east coast.
- Creator
- Zweck, O. V., Hale, D. A., Harbor Branch Oceanographic Institute
- Date Issued
- 1979
- PURL
- http://purl.flvc.org/FCLA/DT/3183150
- Subject Headings
- Water currents, Tidal currents, Ocean waves--Analysis
- Format
- Document (PDF)
- Title
- MODELING, PATH PLANNING, AND CONTROL CO-DESIGN OF MARINE CURRENT TURBINES.
- Creator
- Hasankhani, Arezoo, Tang, Yufei, VanZwieten, James, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
Marine and hydrokinetic (MHK) energy systems, including marine current turbines and wave energy converters, could contribute significantly to reducing reliance on fossil fuels and improving energy security while accelerating progress in the blue economy. However, technologies to capture them are nascent in development due to several technical and economic challenges. For example, for capturing ocean flows, the fluid velocity is low but density is high, resulting in early boundary layer...
Show moreMarine and hydrokinetic (MHK) energy systems, including marine current turbines and wave energy converters, could contribute significantly to reducing reliance on fossil fuels and improving energy security while accelerating progress in the blue economy. However, technologies to capture them are nascent in development due to several technical and economic challenges. For example, for capturing ocean flows, the fluid velocity is low but density is high, resulting in early boundary layer separation and high torque. This dissertation addresses critical challenges in modeling, optimization, and control co-design of MHK energy systems, with specific case studies of a variable buoyancy-controlled marine current turbine (MCT). Specifically, this dissertation presents (a) comprehensive dynamic modeling of the MCT, where data recorded by an acoustic Doppler current profiler will be used as the real ocean environment; (b) vertical path planning of the MCT, where the problem is formulated as a novel spatial-temporal optimization problem to maximize the total harvested power of the system in an uncertain oceanic environment; (c) control co-design of the MCT, where the physical device geometry and turbine path control are optimized simultaneously. In a nutshell, the contributions are summarized as follows:
Show less - Date Issued
- 2022
- PURL
- http://purl.flvc.org/fau/fd/FA00013991
- Subject Headings
- Marine turbines, Modeling dynamic systems, Ocean wave power
- Format
- Document (PDF)
- Title
- Dynamic analysis of single- and multi-module platforms in waves.
- Creator
- Kling, Kaylie Ann., Florida Atlantic University, Ananthakrishnan, Palaniswamy, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The response of single- and multi-module floating platforms to surface waves is investigated theoretically. Wave exciting forces are computed using methods based on the Morrison equation and Froude-Krylov hypothesis. The radiation forces are obtained from experimental results of Vugt and where possible diffraction forces using the Haskind reciprocity relation. Heave and pitch response of a one-module platform and hinge-connected two-module platform are determined by integrating the...
Show moreThe response of single- and multi-module floating platforms to surface waves is investigated theoretically. Wave exciting forces are computed using methods based on the Morrison equation and Froude-Krylov hypothesis. The radiation forces are obtained from experimental results of Vugt and where possible diffraction forces using the Haskind reciprocity relation. Heave and pitch response of a one-module platform and hinge-connected two-module platform are determined by integrating the corresponding equations of rigid-body motion. A structural dynamic analysis is also carried out using the Green's function method to determine the elastic flexural response of the platform to waves. The results are compared with the experimental and numerical findings of others. The thesis contributes to a better understanding of rigid-body and elastic response of large ocean platforms subject to wave forces. The methodology is computationally less intensive and therefore can be effectively used for the design of platforms and the validation of numerical algorithms.
Show less - Date Issued
- 2006
- PURL
- http://purl.flvc.org/fcla/dt/13399
- Subject Headings
- Ocean engineering, Wave motion, Theory of, Water waves--Mathematical models, Drilling platforms, Extreme value theory
- Format
- Document (PDF)
- Title
- Sea current generator.
- Creator
- Wilson, Debra L.
- PURL
- http://purl.flvc.org/fcla/dt/3358745
- Subject Headings
- Energy, Ocean currents, Alternative energy sources, Renewable energy sources, Ocean wave power
- Format
- Document (PDF)
- Title
- Optimization of an Ocean Current Turbine Design and Prediction of Wake Propagation in an Array.
- Creator
- Kawssarani, Ali, VanZwieten, James H., Seiffert, Betsy, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
This research focused on maximizing the power generated by an array of ocean current turbines. To achieve this objective, the produced shaft power of an ocean current turbine (OCT) has been quantified using CFD without adding a duct, as well as over a range of duct geometries. For an upstream duct, having a diameter 1.6 times the rotor diameter, the power increased by 8.35% for a duct that extends 1 diameter upstream. This research also focused on turbine array optimization, providing a...
Show moreThis research focused on maximizing the power generated by an array of ocean current turbines. To achieve this objective, the produced shaft power of an ocean current turbine (OCT) has been quantified using CFD without adding a duct, as well as over a range of duct geometries. For an upstream duct, having a diameter 1.6 times the rotor diameter, the power increased by 8.35% for a duct that extends 1 diameter upstream. This research also focused on turbine array optimization, providing a mathematical basis for calculating the water velocity within an array of OCTs. After developing this wake model, it was validated using experimental data. As the downstream distance behind the turbine increases, the analytic results become closer to the experimental results, with a difference of 3% for TI = 3% and difference of 4% for TI = 15%, both at a downstream distance of 4 rotor diameters.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00013077
- Subject Headings
- Turbines--Design and construction., Marine turbines., Ocean current energy, Ocean wave power
- Format
- Document (PDF)
- Title
- Numerical Simulation and Performance Characterization of Two Wave Energy Converters.
- Creator
- DePietro, Abigail R., VanZwieten, James, Florida Atlantic University, Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science
- Abstract/Description
-
This research consists of the numerical model development and simulation of two prototype Wave Energy Convertor designs (WECs) across three simulation types. The first design is an oscillating body WEC called the Platypus designed to capture wave energy as three paddle arms actuate over the surface of the waves. The second design is an overtopping type WEC called the ROOWaC which captures and drains entrained water to generate power. Modeling of these systems was conducted using two...
Show moreThis research consists of the numerical model development and simulation of two prototype Wave Energy Convertor designs (WECs) across three simulation types. The first design is an oscillating body WEC called the Platypus designed to capture wave energy as three paddle arms actuate over the surface of the waves. The second design is an overtopping type WEC called the ROOWaC which captures and drains entrained water to generate power. Modeling of these systems was conducted using two techniques: the Morison load approach implemented using hydrodynamic response coefficients used to model the Platypus and a boundary element method (BEM) frequency-domain approach to model both WEC designs in the time domain. The BEM models included the development of hydrodynamic response coefficients using a discretized panel mesh of the system for calculation of added mass, excitation, and radiation forces. These three model families provided both performance predictions and power output information to WEC developers that supply important data for future full-scale designs. These models were used to predict power generation estimates for both WECs as follows: the Platypus WEC was predicted to have a maximum efficiency range between 14.5-35% and the ROOWaC WEC was predicted to generate a maximum peak average power of 19 W upon preliminary results.
Show less - Date Issued
- 2022
- PURL
- http://purl.flvc.org/fau/fd/FA00013956
- Subject Headings
- Ocean energy resources--Research, Ocean wave power, Simulations, Mathematical methods and modelling
- Format
- Document (PDF)
- Title
- Wave Ship Interaction in Transforming Seas.
- Creator
- Gong, Fuxian, Dhanak, Manhar R., Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
In near-shore transforming seas, as waves approach the shoreline, wave shoaling and sometimes wave breaking take place due to the decreasing water depth. When a ship advances through the transforming seas, the ship body and waves interact with each other substantially and can lead to unknown motions of the ship hull. The physical process of how the wave transforms in the surf zone and how the vehicle actually behaves when it passes through the transforming seas is a complicated issue that...
Show moreIn near-shore transforming seas, as waves approach the shoreline, wave shoaling and sometimes wave breaking take place due to the decreasing water depth. When a ship advances through the transforming seas, the ship body and waves interact with each other substantially and can lead to unknown motions of the ship hull. The physical process of how the wave transforms in the surf zone and how the vehicle actually behaves when it passes through the transforming seas is a complicated issue that triggers considerable research interest. The goal of my research is to characterize the dynamics of a high-speed surface ship model in transforming seas through a parametric numerical study of the shipwave interactions. In this study, the vehicle of interest is a surface effect ship (SES) and we aim to contribute to developing a methodology for simulating the transforming wave environment, including wave breaking, and its interactions with the SES. The thesis work uses a commercial software package ANSYS Fluent to generate numerical waves and model the interface between water and air using the volume of fluid (VoF) method. A ship motion solver and the dynamic mesh are used to enable the modeled ship to perform three degree-of-freedom (DoF) motion and the near-region of the ship hull to deform as well as re-mesh. Non-conformal meshes with hybrid compositions of different cell types and various grid sizes are used in the simulations for different purposes. Five user-defined functions (UDFs) are dynamically linked with the flow solver to incorporates ship/grid motions, wave damping and output of the numerical results. A series of steps were taken sequentially: 1) validation for ship motions including simulation of a static Wigley hull under steady flows to compare against previous experimental results by other researchers, and the comparison between the static SES model under steady flows and the moving SES model advancing in the calm water; 2) study of the ship with 3 DoF advancing in calm water of both constant depth and varying depth; 3) validation for numerical waves, including predictions of numerically progressive waves in both a regular tank and a tank with a sloped fringing reef to compare with theoretical and experimental results, respectively; 4) investigation of the transforming characteristics of the wave traveling over the sloped fringing reef, which mimics the near-shore wave environment and a study of the dynamics of the SES through transforming waves. We find that the flow solver used in this study reliably models the wave profiles along the ship hull. The comparison between a static SES in a current and a moving SES in calm water at the same Froude number shows that although the velocity fields around the vehicle are significantly different, the wave profiles inside and outside the rigid cushion of the vehicle are similar and the resistance force experienced by the vehicle in the two scenarios agree well over time. We conducted five numerical simulations of the vehicle traveling from shallow water to deep water across the transition zone for different Froude numbers. From the results, we find that as the Froude number increases, the wave resistance force on the vehicle becomes larger in both shallow water and deep water. In addition, the overall mean resistance force experienced by the vehicle over the whole trip increases with the Froude number. Statistical analysis of the wave motions suggests that the energy flux decreases dramatically in the onshore direction as the waves break. The more severe the wave-breaking process, the greater the decrease in energy flux. Both the increase of Froude number and the wave steepness apparently increase the resistance force on the vehicle in the shallow water. This thesis work captures the impact of the transforming characteristics of the waves and closely replicates the behavior of how waves interact with a ship in transforming seas through numerical modeling and simulation.
Show less - Date Issued
- 2017
- PURL
- http://purl.flvc.org/fau/fd/FA00004916, http://purl.flvc.org/fau/fd/FA00004916
- Subject Headings
- Hydrodynamics--Mathematical models., Fluid dynamics--Mathematical models., Ocean waves--Measurement., Water waves--Measurement., Coastal engineering.
- Format
- Document (PDF)
- Title
- Spectral evaluation of motion compensated adv systems for ocean turbulence measurements.
- Creator
- Egeland, Matthew Nicklas, von Ellenrieder, Karl, VanZwieten, James H., Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
A motion compensated ADV system was evaluated to determine its ability to make measurements necessary for characterizing the variability of the ambient current in the Gulf Stream. The impact of IMU error relative to predicted turbulence spectra was quantified, as well as and the ability of the motion compensation approach to remove sensor motion from the ADV measurements. The presented data processing techniques are shown to allow the evaluated ADV to be effectively utilized for quantifying...
Show moreA motion compensated ADV system was evaluated to determine its ability to make measurements necessary for characterizing the variability of the ambient current in the Gulf Stream. The impact of IMU error relative to predicted turbulence spectra was quantified, as well as and the ability of the motion compensation approach to remove sensor motion from the ADV measurements. The presented data processing techniques are shown to allow the evaluated ADV to be effectively utilized for quantifying ambient current fluctuations from 0.02 to 1 Hz (50 to 1 seconds) for dissipation rates as low as 3x10-7. This measurement range is limited on the low frequency end by IMU error, primarily by the calculated transformation matrix, and on the high end by Doppler noise. Inshore testing has revealed a 0.37 Hz oscillation inherent in the towfish designed and manufactured as part of this project, which can nearly be removed using the IMU.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004191, http://purl.flvc.org/fau/fd/FA00004191
- Subject Headings
- Fluid dynamic measurements, Fluid mechanics -- Mathematical models, Motion control systems, Ocean atmosphere interaction, Ocean circulation, Turbulence, Wave motion, Theory of
- Format
- Document (PDF)
- Title
- Characterizing the Magnetic Signature of Internal Waves.
- Creator
- Nieves, Eric, Beaujean, Pierre-Philippe, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
This study is performed in tandem with numerous experiments performed by the U.S. Navy to characterize the ocean environment in the South Florida region. The research performed in this study includes signal processing steps for isolating ocean phenomena, such as internal waves, in the magnetic field. Raw magnetometer signals, one on shore and one underwater, are processed and removed of common distortions. They are then run through a series of filtering techniques, including frequency domain...
Show moreThis study is performed in tandem with numerous experiments performed by the U.S. Navy to characterize the ocean environment in the South Florida region. The research performed in this study includes signal processing steps for isolating ocean phenomena, such as internal waves, in the magnetic field. Raw magnetometer signals, one on shore and one underwater, are processed and removed of common distortions. They are then run through a series of filtering techniques, including frequency domain cancellation (FDC). The results of the filtered magnetic residual are compared to similarly processed Acoustic Doppler Current Profiler (ADCP) data to correlate whether a magnetic signature is caused by ocean phenomena.
Show less - Date Issued
- 2017
- PURL
- http://purl.flvc.org/fau/fd/FA00004917, http://purl.flvc.org/fau/fd/FA00004917
- Subject Headings
- Ocean currents--Measurement., Adaptive signal processing., Wave-motion, Theory of., Wavelets (Mathematics)
- Format
- Document (PDF)
- Title
- Numerical simulation tool for moored marine hydrokinetic turbines.
- Creator
- Hacker, Basil L., Ananthakrishnan, Palaniswamy, VanZwieten, James H., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The research presented in this thesis utilizes Blade Element Momentum (BEM) theory with a dynamic wake model to customize the OrcaFlex numeric simulation platform in order to allow modeling of moored Ocean Current Turbines (OCTs). This work merges the advanced cable modeling tools available within OrcaFlex with well documented BEM rotor modeling approach creating a combined tool that was not previously available for predicting the performance of moored ocean current turbines. This tool allows...
Show moreThe research presented in this thesis utilizes Blade Element Momentum (BEM) theory with a dynamic wake model to customize the OrcaFlex numeric simulation platform in order to allow modeling of moored Ocean Current Turbines (OCTs). This work merges the advanced cable modeling tools available within OrcaFlex with well documented BEM rotor modeling approach creating a combined tool that was not previously available for predicting the performance of moored ocean current turbines. This tool allows ocean current turbine developers to predict and optimize the performance of their devices and mooring systems before deploying these systems at sea. The BEM rotor model was written in C++ to create a back-end tool that is fed continuously updated data on the OCT’s orientation and velocities as the simulation is running. The custom designed code was written specifically so that it could operate within the OrcaFlex environment. An approach for numerically modeling the entire OCT system is presented, which accounts for the additional degree of freedom (rotor rotational velocity) that is not accounted for in the OrcaFlex equations of motion. The properties of the numerically modeled OCT were then set to match those of a previously numerically modeled Southeast National Marine Renewable Energy Center (SNMREC) OCT system and comparisons were made. Evaluated conditions include: uniform axial and off axis currents, as well as axial and off axis wave fields. For comparison purposes these conditions were applied to a geodetically fixed rotor, showing nearly identical results for the steady conditions but varied, in most cases still acceptable accuracy, for the wave environment. Finally, this entire moored OCT system was evaluated in a dynamic environment to help quantify the expected behavioral response of SNMREC’s turbine under uniform current.
Show less - Date Issued
- 2013
- PURL
- http://purl.flvc.org/fau/fd/FA0004024
- Subject Headings
- Fluid dynamics, Hydrodynamics -- Research, Marine turbines -- Mathematical models, Ocean wave power, Structural dynamics
- Format
- Document (PDF)
- Title
- Subsurface flow generated by a steady wind stress applied at the water surface.
- Creator
- Gurfinkiel, Lionel., Florida Atlantic University, Dhanak, Manhar R.
- Abstract/Description
-
A turbulent water current induced by winds, through a friction force at the sea surface and subjected to the Coriolis force in shallow water was studied. A Large Eddy Simulation model developed by Zikanov et al. is used to solve the Navier-Stokes equations. To define the bottom boundary condition, a drag coefficient parameter, based on the ideas of Csanady, is used to evaluate the shear stress at the bottom. To find a suitable bottom boundary condition for this LES simulation, several cases...
Show moreA turbulent water current induced by winds, through a friction force at the sea surface and subjected to the Coriolis force in shallow water was studied. A Large Eddy Simulation model developed by Zikanov et al. is used to solve the Navier-Stokes equations. To define the bottom boundary condition, a drag coefficient parameter, based on the ideas of Csanady, is used to evaluate the shear stress at the bottom. To find a suitable bottom boundary condition for this LES simulation, several cases were considered with change in drag coefficient property. The effect of variation in the depth of the water column was also considered. Variation in surface deflection of the current, variation of the mass flux and distribution of eddy viscosity with depth of the water column are determined. The cases are compared with the case of a deep water column. Numerical results are also compared with field observations.
Show less - Date Issued
- 2003
- PURL
- http://purl.flvc.org/fcla/dt/13030
- Subject Headings
- Ocean-atmosphere interaction--Mathematical models, Turbulence, Wind waves--Mathematical models
- Format
- Document (PDF)
- Title
- Time-dependent multipath modeling for underwater acoustic wave propagation in shallow water.
- Creator
- Boulanger, Florent Jacques., Florida Atlantic University, Beaujean, Pierre-Philippe
- Abstract/Description
-
A novel acoustic wave propagation model has been developed to determine the effects of the ocean variations on the acoustic propagation field, and to determine the signal measured by a receiver at any distance from an omnidirectional source. The model accounts for environmental conditions. First, a stationary estimate of the complex sound attenuation is computed as a function of frequency and location, using the parabolic equation numerical technique. For a given range, the vertical profile...
Show moreA novel acoustic wave propagation model has been developed to determine the effects of the ocean variations on the acoustic propagation field, and to determine the signal measured by a receiver at any distance from an omnidirectional source. The model accounts for environmental conditions. First, a stationary estimate of the complex sound attenuation is computed as a function of frequency and location, using the parabolic equation numerical technique. For a given range, the vertical profile of the attenuation frequency spectrum is decomposed in the wave number domain. A specific Doppler shift is associated with each wave number. The space-frequency attenuation filter obtained is applied to the transmitted signal to create time-frequency selective fading. This model has been used to simulate the performance of the General Purpose Acoustic Modem, which transmits MFSK modulated sequences between 15.6 kHz to 32.1 kHz. The range of operation varies from 1 to 5 km, in 15 meters of water. Experimental data have been collected under sea-state 2 conditions. The model has been successfully validated when compared to experimental data and to the Crepeau model.
Show less - Date Issued
- 2003
- PURL
- http://purl.flvc.org/fcla/dt/12978
- Subject Headings
- Underwater acoustics--Mathematical models, Sound--Transmission, Ocean waves--Mathematical models
- Format
- Document (PDF)
- Title
- Environmental siting suitability analysis for commercial scale ocean renewable energy: a southeast Florida case study.
- Creator
- Mulcan, Amanda, Hanson, Howard P., Hindle, Tobin, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Geosciences
- Abstract/Description
-
This thesis aims to facilitate the siting and implementation of Florida Atlantic University Southeast National Marine Renewable Energy Center (FAU SNMREC) ocean current energy (OCE) projects offshore southeastern Florida through the analysis of benthic anchoring conditions. Specifically, a suitability analysis considering all presently available biologic and geologic datasets within the legal framework of OCE policy and regulation was done. OCE related literature sources were consulted to...
Show moreThis thesis aims to facilitate the siting and implementation of Florida Atlantic University Southeast National Marine Renewable Energy Center (FAU SNMREC) ocean current energy (OCE) projects offshore southeastern Florida through the analysis of benthic anchoring conditions. Specifically, a suitability analysis considering all presently available biologic and geologic datasets within the legal framework of OCE policy and regulation was done. OCE related literature sources were consulted to assign suitability levels to each dataset, ArcGIS interpolations generated seafloor substrate maps, and existing submarine cable pathways were considered for OCE power cables. The finalized suitability map highlights the eastern study area as most suitable for OCE siting due to its abundance of sand/sediment substrate, existing underwater cable route access, and minimal biologic presence. Higher resolution datasets are necessary to locate specific OCE development locales, better understand their benthic conditions, and minimize potentially negative OCE environmental impacts.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004220, http://purl.flvc.org/fau/fd/FA00004220
- Subject Headings
- Marine resources development -- Case studies, Ocean energy resources -- Environmental aspects -- Case studies, Ocean wave power -- Case studies, Renewable energy sources -- Environmental aspects -- Case studies
- Format
- Document (PDF)