Current Search: Number theory -- Data processing (x)
View All Items
- Title
- Elliptic curves: identity-based signing and quantum arithmetic.
- Creator
- Budhathoki, Parshuram, Steinwandt, Rainer, Eisenbarth, Thomas, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Mathematical Sciences
- Abstract/Description
-
Pairing-friendly curves and elliptic curves with a trapdoor for the discrete logarithm problem are versatile tools in the design of cryptographic protocols. We show that curves having both properties enable a deterministic identity-based signing with “short” signatures in the random oracle model. At PKC 2003, Choon and Cheon proposed an identity-based signature scheme along with a provable security reduction. We propose a modification of their scheme with several performance benefits. In...
Show morePairing-friendly curves and elliptic curves with a trapdoor for the discrete logarithm problem are versatile tools in the design of cryptographic protocols. We show that curves having both properties enable a deterministic identity-based signing with “short” signatures in the random oracle model. At PKC 2003, Choon and Cheon proposed an identity-based signature scheme along with a provable security reduction. We propose a modification of their scheme with several performance benefits. In addition to faster signing, for batch signing the signature size can be reduced, and if multiple signatures for the same identity need to be verified, the verification can be accelerated. Neither the signing nor the verification algorithm rely on the availability of a (pseudo)random generator, and we give a provable security reduction in the random oracle model to the (`-)Strong Diffie-Hellman problem. Implementing the group arithmetic is a cost-critical task when designing quantum circuits for Shor’s algorithm to solve the discrete logarithm problem. We introduce a tool for the automatic generation of addition circuits for ordinary binary elliptic curves, a prominent platform group for digital signatures. Our Python software generates circuit descriptions that, without increasing the number of qubits or T-depth, involve less than 39% of the number of T-gates in the best previous construction. The software also optimizes the (CNOT) depth for F2-linear operations by means of suitable graph colorings.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004182, http://purl.flvc.org/fau/fd/FA00004182
- Subject Headings
- Coding theory, Computer network protocols, Computer networks -- Security measures, Data encryption (Computer science), Mathematical physics, Number theory -- Data processing
- Format
- Document (PDF)
- Title
- A study of divisors and algebras on a double cover of the affine plane.
- Creator
- Bulj, Djordje., Charles E. Schmidt College of Science, Department of Mathematical Sciences
- Abstract/Description
-
An algebraic surface defined by an equation of the form z2 = (x+a1y) ... (x + any) (x - 1) is studied, from both an algebraic and geometric point of view. It is shown that the surface is rational and contains a singular point which is nonrational. The class group of Weil divisors is computed and the Brauer group of Azumaya algebras is studied. Viewing the surface as a cyclic cover of the affine plane, all of the terms in the cohomology sequence of Chase, Harrison and Roseberg are computed.
- Date Issued
- 2012
- PURL
- http://purl.flvc.org/FAU/3355618
- Subject Headings
- Algebraic number theory, Geometry, Data processing, Noncommutative differential geometry, Mathematical physics, Curves, Algebraic, Commutative rings
- Format
- Document (PDF)
- Title
- A Study on Partially Homomorphic Encryption Schemes.
- Creator
- Mithila, Shifat P., Karabina, Koray, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Mathematical Sciences
- Abstract/Description
-
High processing time and implementation complexity of the fully homomorphic encryption schemes intrigued cryptographers to extend partially homomorphic encryption schemes to allow homomorphic computation for larger classes of polynomials. In this thesis, we study several public key and partially homomorphic schemes and discuss a recent technique for boosting linearly homomorphic encryption schemes. Further, we implement this boosting technique on CGS linearly homomorphic encryption scheme to...
Show moreHigh processing time and implementation complexity of the fully homomorphic encryption schemes intrigued cryptographers to extend partially homomorphic encryption schemes to allow homomorphic computation for larger classes of polynomials. In this thesis, we study several public key and partially homomorphic schemes and discuss a recent technique for boosting linearly homomorphic encryption schemes. Further, we implement this boosting technique on CGS linearly homomorphic encryption scheme to allow one single multiplication as well as arbitrary number of additions on encrypted plaintexts. We provide MAGMA source codes for the implementation of the CGS scheme along with the boosted CGS scheme.
Show less - Date Issued
- 2017
- PURL
- http://purl.flvc.org/fau/fd/FA00004840, http://purl.flvc.org/fau/fd/FA00004840
- Subject Headings
- Computer networks--Security measures., Computer security., Computers--Access control--Code words., Cyberinfrastructure., Computer network architectures., Cryptography., Number theory--Data processing.
- Format
- Document (PDF)
- Title
- Subjecting the CHIMERA supernova code to two hydrodynamic test problems, (i) Riemann problem and (ii) Point blast explosion.
- Creator
- Ahsan, Abu Salah M., Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
A Shock wave as represented by the Riemann problem and a Point-blast explosion are two key phenomena involved in a supernova explosion. Any hydrocode used to simulate supernovae should be subjected to tests consisting of the Riemann problem and the Point-blast explosion. L. I. Sedov's solution of Point-blast explosion and Gary A. Sod's solution of a Riemann problem have been re-derived here from one dimensional fluid dynamics equations . Both these problems have been solved by using the idea...
Show moreA Shock wave as represented by the Riemann problem and a Point-blast explosion are two key phenomena involved in a supernova explosion. Any hydrocode used to simulate supernovae should be subjected to tests consisting of the Riemann problem and the Point-blast explosion. L. I. Sedov's solution of Point-blast explosion and Gary A. Sod's solution of a Riemann problem have been re-derived here from one dimensional fluid dynamics equations . Both these problems have been solved by using the idea of Self-similarity and Dimensional analysis. The main focus of my research was to subject the CHIMERA supernova code to these two hydrodynamic tests. Results of CHIMERA code for both the blast wave and Riemann problem have then been tested by comparing with the results of the analytic solution.
Show less - Date Issued
- 2008
- PURL
- http://purl.flvc.org/FAU/172665
- Subject Headings
- Mathematical physics, Continuum mechanics, Number theory, Supernovae, Data processing, Shock waves, Fluid dynamics
- Format
- Document (PDF)