Current Search: Noetherian rings (x)
View All Items
- Title
- H-LOCAL RINGS.
- Creator
- Omairi, Akeel, Klingler, Lee, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Mathematical Sciences
- Abstract/Description
-
We say that a commutative ring R has the unique decomposition into ideals (UDI) property if, for any R-module which decomposes into a _nite direct sum of indecomposable ideals, this decomposition is unique up to the order and isomorphism class of the ideals. In a 2001 paper, Goeters and Olberding characterize the UDI property for Noetherian integral domains and in a 2011 paper Ay and Klingler obtain similar results for Noetherian reduced rings. We characterize the UDI property for Noetherian...
Show moreWe say that a commutative ring R has the unique decomposition into ideals (UDI) property if, for any R-module which decomposes into a _nite direct sum of indecomposable ideals, this decomposition is unique up to the order and isomorphism class of the ideals. In a 2001 paper, Goeters and Olberding characterize the UDI property for Noetherian integral domains and in a 2011 paper Ay and Klingler obtain similar results for Noetherian reduced rings. We characterize the UDI property for Noetherian rings in general.
Show less - Date Issued
- 2019
- PURL
- http://purl.flvc.org/fau/fd/FA00013336
- Subject Headings
- Noetherian rings, Prüfer rings, Local rings
- Format
- Document (PDF)
- Title
- Unique decomposition of direct sums of ideals.
- Creator
- Ay, Basak., Charles E. Schmidt College of Science, Department of Mathematical Sciences
- Abstract/Description
-
We say that a commutative ring R has the unique decomposition into ideals (UDI) property if, for any R-module which decomposes into a finite direct sum of indecomposable ideals, this decomposition is unique up to the order and isomorphism class of the ideals. In a 2001 paper, Goeters and Olberding characterize the UDI property for Noetherian integral domains. In Chapters 1-3 the UDI property for reduced Noetherian rings is characterized. In Chapter 4 it is shown that overrings of one...
Show moreWe say that a commutative ring R has the unique decomposition into ideals (UDI) property if, for any R-module which decomposes into a finite direct sum of indecomposable ideals, this decomposition is unique up to the order and isomorphism class of the ideals. In a 2001 paper, Goeters and Olberding characterize the UDI property for Noetherian integral domains. In Chapters 1-3 the UDI property for reduced Noetherian rings is characterized. In Chapter 4 it is shown that overrings of one-dimensional reduced commutative Noetherian rings with the UDI property have the UDI property, also. In Chapter 5 we show that the UDI property implies the Krull-Schmidt property for direct sums of torsion-free rank one modules for a reduced local commutative Noetherian one-dimensional ring R.
Show less - Date Issued
- 2010
- PURL
- http://purl.flvc.org/FAU/2683133
- Subject Headings
- Algebraic number theory, Modules (Algebra), Noetherian rings, Commutative rings, Algebra, Abstract
- Format
- Document (PDF)
- Title
- Minimal zero-dimensional extensions.
- Creator
- Chiorescu, Marcela, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Mathematical Sciences
- Abstract/Description
-
The structure of minimal zero-dimensional extension of rings with Noetherian spectrum in which zero is a primary ideal and with at most one prime ideal of height greater than one is determined. These rings include K[[X,T]] where K is a field and Dedenkind domains, but need not be Noetherian nor integrally closed. We show that for such a ring R there is a one-to-one correspondence between isomorphism classes of minimal zero-dimensional extensions of R and sets M, where the elements of M are...
Show moreThe structure of minimal zero-dimensional extension of rings with Noetherian spectrum in which zero is a primary ideal and with at most one prime ideal of height greater than one is determined. These rings include K[[X,T]] where K is a field and Dedenkind domains, but need not be Noetherian nor integrally closed. We show that for such a ring R there is a one-to-one correspondence between isomorphism classes of minimal zero-dimensional extensions of R and sets M, where the elements of M are ideals of R primary for distinct prime ideals of height greater than zero. A subsidiary result is the classification of minimal zero-dimensional extensions of general ZPI-rings.
Show less - Date Issued
- 2009
- PURL
- http://purl.flvc.org/FAU/210447
- Subject Headings
- Algebra, Abstract, Noetherian rings, Commutative rings, Modules (Algebra), Algebraic number theory
- Format
- Document (PDF)