Current Search: Musical perception (x)
View All Items
- Title
- Attentional and affective responses to complex musical rhythms.
- Creator
- Chapin, Heather L., Charles E. Schmidt College of Science, Center for Complex Systems and Brain Sciences
- Abstract/Description
-
I investigated how two types of rhythmic complexity, syncopation and tempo fluctuation, affect the neural and behavioral responses of listeners. The aim of Experiment 1 was to explore the role of attention in pulse and meter perception using complex rhythms. A selective attention paradigm was used in which participants attended either to a complex auditory rhythm or a visually presented list of words. Performance on a reproduction task was used to gauge whether participants were attending to...
Show moreI investigated how two types of rhythmic complexity, syncopation and tempo fluctuation, affect the neural and behavioral responses of listeners. The aim of Experiment 1 was to explore the role of attention in pulse and meter perception using complex rhythms. A selective attention paradigm was used in which participants attended either to a complex auditory rhythm or a visually presented list of words. Performance on a reproduction task was used to gauge whether participants were attending to the appropriate stimulus. Selective attention to rhythms led to increased BOLD (Blood Oxygen Level-Dependent) responses in basal ganglia, and basal ganglia activity was observed only after the rhythms had cycled enough times for a stable pulse percept to develop. These observations show that attention is needed to recruit motor activations associated with the perception of pulse in complex rhythms. Moreover, attention to the auditory stimulus enhanced activity in an attentional sensory network including primary auditory, insula, anterior cingulate, and prefrontal cortex, and suppressed activity in sensory areas associated with attending to the visual stimulus. In Experiment 2, the effect of tempo fluctuation in expressive music on emotional responding in musically experienced and inexperienced listeners was investigated. Participants listened to a skilled music performance, including natural fluctuations in timing and sound intensity that musicians use to evoke emotional responses, and a mechanical performance of the same piece, that served as a control. Participants reported emotional responses on a 2-dimensional rating scale (arousal and valence), before and after fMRI scanning. During fMRI scanning, participants listened without reporting emotional responses. Tempo fluctuations predicted emotional arousal ratings for all listeners., Expressive performance was associated with BOLD increases in limbic areas for all listeners and in limbic and reward related areas forthose with musical experience. Activity in the dorsal anterior cingulate, which may reflect temporal expectancy, was also dependent on the musical experience of the listener. Changes in tempo correlated with activity in a mirror neuron network in all listeners, and mirror neuron activity was associated with emotional arousal in experienced listeners. These results suggest that emotional responding to music occurs through an empathic motor resonance.
Show less - Date Issued
- 2009
- PURL
- http://purl.flvc.org/FAU/368606
- Subject Headings
- Perceptual-motor learning, Musical perception, Computational neuroscience, Emotions in music, Music, Psychological aspects
- Format
- Document (PDF)
- Title
- 1/f structure of temporal fluctuation in rhythm performance and rhythmic coordination.
- Creator
- Rankin, Summer K., Charles E. Schmidt College of Science, Center for Complex Systems and Brain Sciences
- Abstract/Description
-
This dissertation investigated the nature of pulse in the tempo fluctuation of music performance and how people entrain with these performed musical rhythms. In Experiment 1, one skilled pianist performed four compositions with natural tempo fluctuation. The changes in tempo showed long-range correlation and fractal (1/f) scaling for all four performances. To determine whether the finding of 1/f structure would generalize to other pianists, musical styles, and performance practices, fractal...
Show moreThis dissertation investigated the nature of pulse in the tempo fluctuation of music performance and how people entrain with these performed musical rhythms. In Experiment 1, one skilled pianist performed four compositions with natural tempo fluctuation. The changes in tempo showed long-range correlation and fractal (1/f) scaling for all four performances. To determine whether the finding of 1/f structure would generalize to other pianists, musical styles, and performance practices, fractal analyses were conducted on a large database of piano performances in Experiment 3. Analyses revealed signicant long-range serial correlations in 96% of the performances. Analysis showed that the degree of fractal structure depended on piece, suggesting that there is something in the composition's musical structure which causes pianists' tempo fluctuations to have a similar degree of fractal structure. Thus, musical tempo fluctuations exhibit long-range correlations and fractal scaling. To examine how people entrain to these temporal fluctuations, a series of behavioral experiments were conducted where subjects were asked to tap the pulse (beat) to temporally fluctuating stimuli. The stimuli for Experiment 2 were musical performances from Experiment 1, with mechanical versions serving as controls. Subjects entrained to all stimuli at two metrical levels, and predicted the tempo fluctuations observed in Experiment 1. Fractal analyses showed that the fractal structure of the stimuli was reected in the inter-tap intervals, suggesting a possible relationship between fractal tempo scaling, pulse perception, and entrainment. Experiments 4-7 investigated the extent to which people use long-range correlation and fractal scaling to predict tempo fluctuations in fluctuating rhythmic sequences., Both natural and synthetic long-range correlations enabled prediction, as well as shuffled versions which contained no long-term fluctuations. Fractal structure of the stimuli was again in the inter-tap intervals, with persistence for the fractal stimuli, and antipersistence for the shuffled stimuli. 1/f temporal structure is suficient though not necessary for prediction of fluctuations in a stimulus with large temporal fluctuations.
Show less - Date Issued
- 2010
- PURL
- http://purl.flvc.org/FAU/2705083
- Subject Headings
- Music, Psychological aspects, Emotions in music, Perceptual-motor learning, Computational neuroscience, Synchronization, Musical perception
- Format
- Document (PDF)