Current Search: Motion control systems (x)
View All Items
- Title
- Spectral evaluation of motion compensated adv systems for ocean turbulence measurements.
- Creator
- Egeland, Matthew Nicklas, von Ellenrieder, Karl, VanZwieten, James H., Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
A motion compensated ADV system was evaluated to determine its ability to make measurements necessary for characterizing the variability of the ambient current in the Gulf Stream. The impact of IMU error relative to predicted turbulence spectra was quantified, as well as and the ability of the motion compensation approach to remove sensor motion from the ADV measurements. The presented data processing techniques are shown to allow the evaluated ADV to be effectively utilized for quantifying...
Show moreA motion compensated ADV system was evaluated to determine its ability to make measurements necessary for characterizing the variability of the ambient current in the Gulf Stream. The impact of IMU error relative to predicted turbulence spectra was quantified, as well as and the ability of the motion compensation approach to remove sensor motion from the ADV measurements. The presented data processing techniques are shown to allow the evaluated ADV to be effectively utilized for quantifying ambient current fluctuations from 0.02 to 1 Hz (50 to 1 seconds) for dissipation rates as low as 3x10-7. This measurement range is limited on the low frequency end by IMU error, primarily by the calculated transformation matrix, and on the high end by Doppler noise. Inshore testing has revealed a 0.37 Hz oscillation inherent in the towfish designed and manufactured as part of this project, which can nearly be removed using the IMU.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004191, http://purl.flvc.org/fau/fd/FA00004191
- Subject Headings
- Fluid dynamic measurements, Fluid mechanics -- Mathematical models, Motion control systems, Ocean atmosphere interaction, Ocean circulation, Turbulence, Wave motion, Theory of
- Format
- Document (PDF)
- Title
- Evaluation of motion compensated ADV measurements for quantifying velocity fluctuations.
- Creator
- Lovenbury, James William., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
This study assesses the viability of using a towfish mounted ADV for quantifying water velocity fluctuations in the Florida Current relevant to ocean current turbine performance. For this study a motion compensated ADV is operated in a test flume. Water velocity fluctuations are generated by a 1.3 cm pipe suspended in front of the ADV at relative current speeds of 0.9 m/s and 0.15 m/s, giving Reynolds numbers on the order of 1000. ADV pitching motion of +/- 2.5 [degree] at 0.3 Hz and a heave...
Show moreThis study assesses the viability of using a towfish mounted ADV for quantifying water velocity fluctuations in the Florida Current relevant to ocean current turbine performance. For this study a motion compensated ADV is operated in a test flume. Water velocity fluctuations are generated by a 1.3 cm pipe suspended in front of the ADV at relative current speeds of 0.9 m/s and 0.15 m/s, giving Reynolds numbers on the order of 1000. ADV pitching motion of +/- 2.5 [degree] at 0.3 Hz and a heave motion of 0.3 m amplitude at 0.2 Hz are utilized to evaluate the motion compensation approach. The results show correction for motion provides up to an order of magnitude reduction in turbulent kinetic energy at frequencies of motion while the IMU is found to generate 2% error at 1/30 Hz and 9% error at 1/60 Hz in turbulence intensity.
Show less - Date Issued
- 2013
- PURL
- http://purl.flvc.org/fcla/dt/3362482
- Subject Headings
- Motion control systems, Fluid dynamic measurements, Fluid mechanics, Mathematical models, Analysis of covariance
- Format
- Document (PDF)
- Title
- Stereo vision-based target tracking system for USV operations.
- Creator
- Sinisterra, Armando Jose, Dhanak, Manhar R., Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
A methodology to estimate the state of a moving marine vehicle, defined by its position, velocity and heading, from an unmanned surface vehicle (USV), also in motion, using a stereo vision-based system, is presented in this work, in support of following a target vehicle using an USV.
- Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004466, http://purl.flvc.org/fau/fd/FA00004466
- Subject Headings
- Adaptive control systems, Adaptive signal processing, Computer vision, Inertial navigation systems, Intelligent control systems, Motion segmentaton, Oceanographic instruments -- Development, Ubiquitous computing
- Format
- Document (PDF)
- Title
- Dynamic positioning and motion mitigation of a scaled sea basing platform.
- Creator
- Marikle, Sean P., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
A 6-Degree Of Freedom (DOF) numeric model and computer simulation along with the 1/10th scale physical model of the Rapidly Deployable Stable Platform (RDSP) are being developed at Florida Atlantic University in response to military needs for ocean platforms with improved sea keeping characteristics. The RDSP is a self deployable spar platform with two distinct modes of operation enabling long distance transit and superior seakeeping. The focus of this research is the development of a Dynamic...
Show moreA 6-Degree Of Freedom (DOF) numeric model and computer simulation along with the 1/10th scale physical model of the Rapidly Deployable Stable Platform (RDSP) are being developed at Florida Atlantic University in response to military needs for ocean platforms with improved sea keeping characteristics. The RDSP is a self deployable spar platform with two distinct modes of operation enabling long distance transit and superior seakeeping. The focus of this research is the development of a Dynamic Position (DP) and motion mitigation system for the RDSP. This will be accomplished though the validation of the mathematical simulation, development of a novel propulsion system, and implementation of a PID controller. The result of this research is an assessment of the response characteristics of the RDSP that quantifies the performance of the propulsion system coupled with active control providing a solid basis for further controller development and operational testing.
Show less - Date Issued
- 2009
- PURL
- http://purl.flvc.org/FAU/228767
- Subject Headings
- Inertial navigation systems, Mobile offshore structures, Design and construction, Wave motion, Theory of, Offshore structures, Dynamics, Feedback control systems
- Format
- Document (PDF)