Current Search: Mechatronics (x)
View All Items
- Title
- Simulations and feedback control of nonlinear coupled electromechanical oscillators for energy conversion applications.
- Creator
- Psarrou, Dimitrios., Dhanak, Manhar R., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
This thesis discusses the coupling of a mechanical and electrical oscillator, an arrangement that is often encountered in mechatronics actuators and sensors. The dynamics of this coupled system is mathematically modeled and a low pass equivalent model is presented. Numerical simulations are then performed, for various input signals to characterize the nonlinear relationship between the electrical current and the displacement of the mass. Lastly a framework is proposed to estimate the mass...
Show moreThis thesis discusses the coupling of a mechanical and electrical oscillator, an arrangement that is often encountered in mechatronics actuators and sensors. The dynamics of this coupled system is mathematically modeled and a low pass equivalent model is presented. Numerical simulations are then performed, for various input signals to characterize the nonlinear relationship between the electrical current and the displacement of the mass. Lastly a framework is proposed to estimate the mass position without the use of a position sensor, enabling the sensorless control of the coupled system and additionally providing the ability for the system to act as an actuator or a sensor. This is of value for health monitoring, diagnostics and prognostics, actuation and power transfer of a number of interconnected machines that have more than one electrical system, driving corresponding mechanical subsystems while being driven by the same voltage source and at the same time being spectrally separated and independent.
Show less - Date Issued
- 2011
- PURL
- http://purl.flvc.org/FAU/3320109
- Subject Headings
- Renewable energy sources, Mechatronics, Nonlinear theories, Oscillators, System analysis
- Format
- Document (PDF)
- Title
- Validity of Linear Position Transducers Versus the Optotrak Certus 3D Motion Capture System.
- Creator
- Goldsmith, Jacob A., Zourdos, Michael C., Florida Atlantic University, College of Education, Department of Exercise Science and Health Promotion
- Abstract/Description
-
The purpose of this study was to investigate the validity of linear position transducers (LPTs), The Open Barbell System (OBS) and Tendo Weightlifting Analyzer System (TWAS), in comparison to criterion measure Optotrak Certus (OC3D). Further, we aimed to compare LPTs against each other. Twenty-five resistance-trained males were recruited, and reported to the laboratory for one day of data collection. Subjects performed one-repetition maximum (1 RM) testing of the squat, then had a...
Show moreThe purpose of this study was to investigate the validity of linear position transducers (LPTs), The Open Barbell System (OBS) and Tendo Weightlifting Analyzer System (TWAS), in comparison to criterion measure Optotrak Certus (OC3D). Further, we aimed to compare LPTs against each other. Twenty-five resistance-trained males were recruited, and reported to the laboratory for one day of data collection. Subjects performed one-repetition maximum (1 RM) testing of the squat, then had a standardized rest before completing one set to failure with 70% 1 RM. There was no significant difference in average velocity (AV) between either LPT vs. OC3D. T-tests revealed significant differences between LPTs and OC3D peak velocity (PV) (OBS: p=0.02080; TWAS: p<0.01). A significant difference was detected between OBS and TWAS PV (p<0.01). OBS and TWAS demonstrated concurrent validity compared to OC3D for AV (OBS: p=0.2014; TWAS: p=0.5466). Neither LPT was a valid measure ofPV (OBS: p=0.0208; TWAS: p<0.01).
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004711, http://purl.flvc.org/fau/fd/FA00004711
- Subject Headings
- Biomechanics, Computers, Special purpose, Coordinate measuring machines, Mechatronics, Medical electronics -- Instrumentation, Transducers
- Format
- Document (PDF)
- Title
- Intelligent Supervisory Switching Control of Unmanned Surface Vehicles.
- Creator
- Bertaska, Ivan Rodrigues, von Ellenrieder, Karl, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
novel approach to extend the decision-making capabilities of unmanned surface vehicles (USVs) is presented in this work. A multi-objective framework is described where separate controllers command different behaviors according to a desired trajectory. Three behaviors are examined – transiting, station-keeping and reversing. Given the desired trajectory, the vehicle is able to autonomously recognize which behavior best suits a portion of the trajectory. The USV uses a combination of a...
Show morenovel approach to extend the decision-making capabilities of unmanned surface vehicles (USVs) is presented in this work. A multi-objective framework is described where separate controllers command different behaviors according to a desired trajectory. Three behaviors are examined – transiting, station-keeping and reversing. Given the desired trajectory, the vehicle is able to autonomously recognize which behavior best suits a portion of the trajectory. The USV uses a combination of a supervisory switching control structure and a reinforcement learning algorithm to create a hybrid deliberative and reactive approach to switch between controllers and actions. Reinforcement learning provides a deliberative method to create a controller switching policy, while supervisory switching control acts reactively to instantaneous changes in the environment. Each action is restricted to one controller. Due to the nonlinear effects in these behaviors, two underactuated backstepping controllers and a fully-actuated backstepping controller are proposed for each transiting, reversing and station-keeping behavior, respectively, restricted to three degrees of freedom. Field experiments are presented to validate this system on the water with a physical USV platform under Sea State 1 conditions. Main outcomes of this work are that the proposed system provides better performance than a comparable gain-scheduled nonlinear controller in terms of an Integral of Absolute Error metric. Additionally, the deliberative component allows the system to identify dynamically infeasible trajectories and properly accommodate them.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004671, http://purl.flvc.org/fau/fd/FA00004671
- Subject Headings
- Adaptive control systems, Artificial intelligence, Engineering mathematics, Intelligent control systems, Mechatronics, Nonlinear control theory, Transportation engineering
- Format
- Document (PDF)