Current Search: Mathematical methods and modelling (x)
View All Items
- Title
- The finite element method as a parametric tool in the design and analysis of a pressure vessel having a threaded closure.
- Creator
- Merkl, Garrett Andrew., Florida Atlantic University, Case, Robert O., Tsai, Chi-Tay, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The finite element method is a very powerful tool used to analyze a variety of problems in engineering. This thesis looks at the finite element method as a tool and several important modeling features of concern. A well known finite element software package, ANSYS, will be used to demonstrate a diverse number of its capabilities, and several procedures followed in solving a specific engineering problem. The subject matter involves a nonlinear contact analysis of a pressure vessel having a...
Show moreThe finite element method is a very powerful tool used to analyze a variety of problems in engineering. This thesis looks at the finite element method as a tool and several important modeling features of concern. A well known finite element software package, ANSYS, will be used to demonstrate a diverse number of its capabilities, and several procedures followed in solving a specific engineering problem. The subject matter involves a nonlinear contact analysis of a pressure vessel having a threaded closure. The choice of this application is prompted by an interest in better understanding how the finite element method is implemented in the design and analysis of different pressure vessel parameters. A parametric finite element analysis was performed. Load and stress distributions along the threaded region of the vessel were examined for parameters including number of threads, thread pitch, diameter ratio, closure plug length, and thread profile.
Show less - Date Issued
- 1996
- PURL
- http://purl.flvc.org/fcla/dt/15243
- Subject Headings
- Finite element method, Pressure vessels--Design and construction, Strains and stresses--Mathematical models
- Format
- Document (PDF)
- Title
- Numerical Simulation and Performance Characterization of Two Wave Energy Converters.
- Creator
- DePietro, Abigail R., VanZwieten, James, Florida Atlantic University, Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science
- Abstract/Description
-
This research consists of the numerical model development and simulation of two prototype Wave Energy Convertor designs (WECs) across three simulation types. The first design is an oscillating body WEC called the Platypus designed to capture wave energy as three paddle arms actuate over the surface of the waves. The second design is an overtopping type WEC called the ROOWaC which captures and drains entrained water to generate power. Modeling of these systems was conducted using two...
Show moreThis research consists of the numerical model development and simulation of two prototype Wave Energy Convertor designs (WECs) across three simulation types. The first design is an oscillating body WEC called the Platypus designed to capture wave energy as three paddle arms actuate over the surface of the waves. The second design is an overtopping type WEC called the ROOWaC which captures and drains entrained water to generate power. Modeling of these systems was conducted using two techniques: the Morison load approach implemented using hydrodynamic response coefficients used to model the Platypus and a boundary element method (BEM) frequency-domain approach to model both WEC designs in the time domain. The BEM models included the development of hydrodynamic response coefficients using a discretized panel mesh of the system for calculation of added mass, excitation, and radiation forces. These three model families provided both performance predictions and power output information to WEC developers that supply important data for future full-scale designs. These models were used to predict power generation estimates for both WECs as follows: the Platypus WEC was predicted to have a maximum efficiency range between 14.5-35% and the ROOWaC WEC was predicted to generate a maximum peak average power of 19 W upon preliminary results.
Show less - Date Issued
- 2022
- PURL
- http://purl.flvc.org/fau/fd/FA00013956
- Subject Headings
- Ocean energy resources--Research, Ocean wave power, Simulations, Mathematical methods and modelling
- Format
- Document (PDF)
- Title
- Lévy flights in Dobe Ju/’hoansi foraging patterns.
- Creator
- Liebovitch, Larry S., Brown, Clifford T., Glendon, Rachel
- Date Issued
- 2007-02-01
- PURL
- http://purl.flvc.org/fau/165800
- Subject Headings
- Hunting and gathering societies--statistical methods, Khoisan (African people), Forage, Human Migration Patterns, Human ecology--Africa, Human settlements--Mathematical models, Search theory
- Format
- Document (PDF)