Current Search: Glutamic acid -- Metabolism (x)
View All Items
- Title
- GAD 65 and its role in pancreatic tissue survival.
- Creator
- Kumari, Neeta., Charles E. Schmidt College of Medicine, Department of Biomedical Science
- Abstract/Description
-
We employed three genotypes of GAD 65, wildtype (GAD 65 +/+), heterozygous (GAD 65 +/-) and knockout (GAD 65 -/-) to investigate the role of GAD 65 in survival of pancreatic islets. We analyzed the mRNA expression of pro-survival proteins including Bcl2 and Bax in pancreas of wildtype, heterozygous and knockout using Reverse Transcriptase Polymerase Chain Reaction (RTPCR). The level of expression of Bcl2 mRNA was down regulated in knockout mice pancreas and Bax to Bcl2 ratio was found higher...
Show moreWe employed three genotypes of GAD 65, wildtype (GAD 65 +/+), heterozygous (GAD 65 +/-) and knockout (GAD 65 -/-) to investigate the role of GAD 65 in survival of pancreatic islets. We analyzed the mRNA expression of pro-survival proteins including Bcl2 and Bax in pancreas of wildtype, heterozygous and knockout using Reverse Transcriptase Polymerase Chain Reaction (RTPCR). The level of expression of Bcl2 mRNA was down regulated in knockout mice pancreas and Bax to Bcl2 ratio was found higher in knockout mice pancreas suggesting higher cell death rate. However, further studies are required to recognize and understand the specific connections between apoptotic pathways and GAD 65 in pancreatic islets.
Show less - Date Issued
- 2012
- PURL
- http://purl.flvc.org/FAU/3342206
- Subject Headings
- Glutamic acids, Antagonists, Cellular signal transduction, Glutamic acid, Metabolism
- Format
- Document (PDF)
- Title
- Cleavage of brain glutamic acid decarboxylase 65 by calpain under pathological conditions.
- Creator
- Buddhala, Chandana, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Brain glutamic acid decarboxylase 65 (GAD65) catalyzes the rate-limiting step in the biosynthesis of the major inhibitory neurotransmitter-amino butyric acid (GABA) from the substrate L-glutamic acid. Severe lapse in GABA neurotransmission is one of the etiologies documented in the manifestation of certain neurodegenerative diseases such as epilepsy, Parkinson's disease, Huntington's disease etc. Because GAD65 synthesizes GABA, any modulation of GAD65, therefore, has direct implications on...
Show moreBrain glutamic acid decarboxylase 65 (GAD65) catalyzes the rate-limiting step in the biosynthesis of the major inhibitory neurotransmitter-amino butyric acid (GABA) from the substrate L-glutamic acid. Severe lapse in GABA neurotransmission is one of the etiologies documented in the manifestation of certain neurodegenerative diseases such as epilepsy, Parkinson's disease, Huntington's disease etc. Because GAD65 synthesizes GABA, any modulation of GAD65, therefore, has direct implications on the quanta of GABA released at the synapse. Hence, the major objective of this study was to focus on the regulation of GAD65, with special emphasis on investigating the proteolytic cleavage of fGAD65. Previously, we have shown in vitro that GAD65 was cleaved to form its truncated form (tGAD65), which was more active than the full length form (fGAD65). The enzyme responsible for cleavage was later identified as calpain. Calpain is known to cleave its substrates either under a transient physiologica l stimulus or upon a sustained pathological insult. However, the precise role of calpain cleavage of fGAD65 is poorly understood. In this study, we examined the cleavage of fGAD65 under a range of conditions encompassing both physiological and pathological aspects, including rats under ischemia/reperfusion insult, rat brain synaptosomes or primary neuronal cultures subjected to excitotoxic stimulation with KCl. It was observed that the formation of tGAD65 progressively increased with increasing stimulus concentration. More importantly, cleavage of synaptic vesicle (SV) - associated fGAD65 by calpain was demonstrated, and the resulting tGAD65 harboring the active site of the enzyme was detached from the SVs. Vesicular uptake of the newly synthesized GABA into the SVs was found to be reduced in calpain treated SVs. Furthermore, we also observed that the levels of tGAD65 in the focal cerebral ischemic rat brain tissue increased corresponding to the elevation of local glutamate indica, d by in vivo micro dialysis. Based on these observations, we conclude that calpain cleavage of fGAD65 occurs under pathological conditions.
Show less - Date Issued
- 2012
- PURL
- http://purl.flvc.org/FAU/3342053
- Subject Headings
- Glutamic acids, Antagonists, Proteolytic enzymes, Research, Cellular signal transduction, Calpain, Glutamic acid, Metabolism
- Format
- Document (PDF)
- Title
- Role of taurine in the central nervous system.
- Creator
- Wu, Jang-Yen, Prentice, Howard
- Date Issued
- 2010-08-24
- PURL
- http://purl.flvc.org/fau/fd/FADT3327262
- Subject Headings
- Central Nervous System --metabolism, Glutamic Acid --metabolism, Homeostasis --physiology, Neuroprotective Agents --metabolism, Neurotransmitter Agents --metabolism, Proto-Oncogene Proteins c-bcl-2 --metabolism, Receptors, Neurotransmitter --metabolism, Signal Transduction --physiology, Taurine, Taurine --metabolism, Neuroprotective Agents, Neurotransmitter Agents
- Format
- Document (PDF)
- Title
- Reciprocal regulation between taurine and glutamate response via Ca2+ - dependent pathways in retinal third-order neurons.
- Creator
- Bulley, Simon, Shen, Wen
- Date Issued
- 2010-08-24
- PURL
- http://purl.flvc.org/fcla/dt/3327274
- Subject Headings
- Amacrine Cells*/cytology, Amacrine Cells*/drug effects, Amacrine Cells*/metabolism, Ambystoma, Calcium/metabolism, Calcium Channels/metabolism, Cells, Cultured, Enzyme Inhibitors/metabolism, Excitatory Amino Acid Agonists/pharmacology, GABA Antagonists/pharmacology, Glutamic Acid/metabolism, Glycine Agents/pharmacology, Kainic Acid/pharmacology, Membrane Glycoproteins, Membrane Potentials, Neurotransmitter Agents, Retinal Ganglion Cells, Signal Transduction, Synaptic Transmission
- Format
- Document (PDF)