Current Search: Epoxy resins (x)
View All Items
- Title
- Anisotropic physical properties of SC-15 epoxy reinforced with magnetic nanofillers under uniform magnetic field.
- Creator
- Malkina, Olga, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
SC-15 epoxy is used in many industrial applications and it is well known that the mechanical and viscoelastic properties of epoxy can be signicantly enhanced when reinforced with nanofillers. In this work, SC-15 epoxy is reinforced by loading with magnetically-active nanofillers and cured in a modest magnetic field. Because of the signicant magnetic response of the nanofillers, this is a low cost and relatively easy technique for imposing a strong magnetic anisotropy to the system without the...
Show moreSC-15 epoxy is used in many industrial applications and it is well known that the mechanical and viscoelastic properties of epoxy can be signicantly enhanced when reinforced with nanofillers. In this work, SC-15 epoxy is reinforced by loading with magnetically-active nanofillers and cured in a modest magnetic field. Because of the signicant magnetic response of the nanofillers, this is a low cost and relatively easy technique for imposing a strong magnetic anisotropy to the system without the need of a superconducting magnet. It is also found that this method is an effective way of enhancing the mechanical properties of epoxy. Three systems were prepared and studied. The first is a dilute system of various concentrations of Fe2O3 nanoparticles in SC-15 epoxy. The second system is a combination of Fe2O3 nanoparticles and chemically-functionalized single-walled carbon nanotubes (SWCNT(COOH)s) in SC-15 epoxy. The third is a dilute system of SWCNT(COOH)s decorated with Fe3O4 particles t hrough a sonochemical oxidation process in SC-15 epoxy. Samples have an initial cure of 6 hrs in a magnetic led of 10 kOe followed by an additional 24 hours of post curing at room temperature. These are compared to the control samples that do not have initial field curing. Tensile and compressive stress-strain analysis of the prepared systems shows that mechanical properties such as tensile strength, tensile modulus and compressive strength are enhanced with the inclusion of these nanofillers. It is also found that there is an anisotropic enhancement of these properties with respect to the imposed curing field. An interesting phenomenon is observed with the increase in modulus of toughness and fracture strain with nanotube inclusion., These parameters are drastically enhanced after curing the systems in a magnetic field. While there is a modest shift in glass transition temperature during viscoelastic analysis, the thermal stability of the created systems is not compromised. Results of these mechanical enhancements will be compared with other nanoloading techniques from literature.
Show less - Date Issued
- 2011
- PURL
- http://purl.flvc.org/FAU/3332722
- Subject Headings
- Nanostructured materials, Epoxy resins, Composite materials, Design
- Format
- Document (PDF)
- Title
- Influence of Voids on Water Uptake in Polymer Panels.
- Creator
- Abdelmola, Fatmaelzahraa, Carlsson, Leif A., Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The influence of voids on the moisture uptake of epoxy has been studied. Specimens with void contents from 0 to about 50% were prepared. Void geometry and content were analyzed using microscopy and density methods. Void containing dry samples were characterized by Differential Scanning Calorimetry and Dynamic-Mechanical Analysis which verified consistency of chemistry of the epoxy network. The moisture uptake of specimens immersed in distilled water at 40 °C was monitored. The rate of...
Show moreThe influence of voids on the moisture uptake of epoxy has been studied. Specimens with void contents from 0 to about 50% were prepared. Void geometry and content were analyzed using microscopy and density methods. Void containing dry samples were characterized by Differential Scanning Calorimetry and Dynamic-Mechanical Analysis which verified consistency of chemistry of the epoxy network. The moisture uptake of specimens immersed in distilled water at 40 °C was monitored. The rate of absorption and saturation moisture content increased with increasing void content. The moisture uptake of void-free and void containing specimens was non-Fickian. The Langmuir model provided good fits to the experimental results for specimens with low to medium void content, although the moisture uptake of the high void content specimens showed substantial deviations from the Langmuir diffusion model. The moisture diffusivity agreed reasonably with predications from the Maxwell inclusion model over a range of void contents from 0 to 50%. The state of sorbed water was examined using mass balance calculations and DSC analysis. Only 6-8% of the void volume is occupied by water at saturation. Absorbed water may be classified as free and bound water. For void-free specimens, only bound water was found. The medium and high void content specimens contained water in three states: free water, freezable bound water, and non-freezable bound water. The DSC results show that the proportions of free water and freezable bound water increase with increasing void content, while the content of non-freezable bound water decreased. Moisture induced swelling decreased with increasing void content. The swelling is attributed to the content of non-freezable bound water.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00013137
- Subject Headings
- Polymers--Absorption and adsorption, Epoxy resins, Water
- Format
- Document (PDF)
- Title
- Reinforcement of syntactic foam with SiC nanoparticles.
- Creator
- Das, Debdutta., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
In this investigation, polymer precursor of syntactic foam has been reinforced with SiC nanoparticles to enhance mechanical and fracture properties. Derakane 8084 vinyl ester resin was first dispersed with 1.0 wt% of SiC particles using a sonic cavitation technique. In the next step, 30.0 wt% of microspheres (3M hollow glass borosilicate, S-series) were mechanically mixed with the nanophased vinyl ester resin, and cast into rectangular molds. A small amount of styrene was used as dilutant to...
Show moreIn this investigation, polymer precursor of syntactic foam has been reinforced with SiC nanoparticles to enhance mechanical and fracture properties. Derakane 8084 vinyl ester resin was first dispersed with 1.0 wt% of SiC particles using a sonic cavitation technique. In the next step, 30.0 wt% of microspheres (3M hollow glass borosilicate, S-series) were mechanically mixed with the nanophased vinyl ester resin, and cast into rectangular molds. A small amount of styrene was used as dilutant to facilitate mixing of microspheres. The size of microspheres and SiC nanoparticles were 20-30 um and 30-50 nm, respectively. Tension, compression, and flexure tests were conducted following ASTM standards and a consistent improvement in strength and modulus within 20-35% range was observed. Fracture toughness parameters such as KIC and GIC were also determined using ASTM E-399. An improvement of about 11-15% was observed. Samples were also subjected to various environmental conditions and degradation in material properties is reported.
Show less - Date Issued
- 2009
- PURL
- http://purl.flvc.org/FAU/359923
- Subject Headings
- Composite materials, Design, Polyurethanes, Mechanical properties, Epoxy resins, Nanostructured materials
- Format
- Document (PDF)