Current Search: Environmental chemistry -- Industrial applications (x)
View All Items
- Title
- Recovering Titanium Dioxide (TiO2) after its Use to Treat Leachate for Reuse on Future Leachate Flows.
- Creator
- Coffman, Neil, Meeroff, Daniel E., Florida Atlantic University, College of Engineering and Computer Science, Department of Civil, Environmental and Geomatics Engineering
- Abstract/Description
-
This thesis was about finding a recovery method for TiO2, using a TiO2 recovery technology, which was high enough to be economical ($10 - $15 per 1,000 gallons) to be adopted by wastewater treatment plants. When comparing recovery technologies, the top three which were investigated further through experimentation were a centrifuge, sedimentation tank, and microfilter membrane. Upon experimentation and research, the TiO2 recovery efficiencies of these technologies were 99.5%, 92.5%, and 96.3%,...
Show moreThis thesis was about finding a recovery method for TiO2, using a TiO2 recovery technology, which was high enough to be economical ($10 - $15 per 1,000 gallons) to be adopted by wastewater treatment plants. When comparing recovery technologies, the top three which were investigated further through experimentation were a centrifuge, sedimentation tank, and microfilter membrane. Upon experimentation and research, the TiO2 recovery efficiencies of these technologies were 99.5%, 92.5%, and 96.3%, respectively. When doing economic analysis on these technologies comparing TiO2 efficiencies and capital and operational costs, the centrifuge was the most preferred economic option. Also, its cost did were in the economical range ($10 - $15/1,000 gallons) which makes even this technology economical. Besides that, important and valuable information about TiO2: settling behavior, particle size and zeta potential, interactions with COD, and filter operations (particle characterization) were discovered for future research and future testing on this issue.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004490, http://purl.flvc.org/fau/fd/FA00004490
- Subject Headings
- Environmental chemistry, Environmental engineering, Fluid dynamics, Microfluidic devices, Sewage disposal plants -- Management, Solution (Chemistry), Titanium dioxide -- Environmental aspects, Titanium dioxide -- Industrial applications
- Format
- Document (PDF)
- Title
- Experimental evaluation of the durability of fly ash-based geopolymer concrete in the marine environment.
- Creator
- Edouard, Jean-Baptiste., College of Engineering and Computer Science, Department of Civil, Environmental and Geomatics Engineering
- Abstract/Description
-
The construction industry is increasingly turning to the use of environmentally friendly materials in order to meet the sustainable aspect required by modern infrastructures. Consequently, for the last two decades, the expansion of this concept, and the increasing global warming have raised concerns on the extensive use of Portland cement due to the high amount of carbon dioxide gas associated with its production. The development of geopolymer concretes offers promising signs for a change in...
Show moreThe construction industry is increasingly turning to the use of environmentally friendly materials in order to meet the sustainable aspect required by modern infrastructures. Consequently, for the last two decades, the expansion of this concept, and the increasing global warming have raised concerns on the extensive use of Portland cement due to the high amount of carbon dioxide gas associated with its production. The development of geopolymer concretes offers promising signs for a change in the way of producing concrete. However, to seriously consider geopolymer binders as an alternative to ordinary Portland cement, the durability of this new material should be evaluated in any comparative analysis. The main purpose of this study was to evaluate the durability characteristics of low calcium fly ash-based geopolymer concretes subjected to the marine environment, compared to ordinary Portland cement concrete with similar exposure. To achieve this goal, 8 molar geopolymer, 14 molar geopolymer and ordinary Portland cement concrete mixes were prepared and tested for exposure in seawater. Compressive strengths in the range of 2900 to 8700 psi (20-60 MPa) were obtained. The corrosion resistance performance of steel-reinforced concrete beams, made of these mixes, was also studied, using an accelerated electrochemical method, with submergence in salt water. The test results indicated that the geopolymer concrete showed excellent resistance to chloride attack, with longer time to corrosion cracking, compared to ordinary Portland cement concrete.
Show less - Date Issued
- 2011
- PURL
- http://purl.flvc.org/FAU/3170960
- Subject Headings
- Reinforced concrete, Corrosion, Testing, Reinforced concrete construction, Concrete, Mixing, Quality control, Environmental chemistry, Industrial applications, Polymer composites
- Format
- Document (PDF)