Current Search: Electrical impedance spectroscopy (x)
View All Items
- Title
- Characterization of nickel electrodes for secondary batteries by means of electrochemical impedance spectroscopy.
- Creator
- Nenov, Krassimir Petrov., Florida Atlantic University, Lipka, Stephen M., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
An automated procedure for integrated cycling and electrochemical impedance spectroscopy (EIS) testing of nickel sinter individualized pressure vessel electrodes for secondary nickel/hydrogen batteries was developed. Nickel electrodes from three major U.S. manufacturers were cycled under various conditions. The condition of the electrodes was monitored using both EIS and traditional electrochemical methods. In order to establish relationships between the status of the electrodes and the...
Show moreAn automated procedure for integrated cycling and electrochemical impedance spectroscopy (EIS) testing of nickel sinter individualized pressure vessel electrodes for secondary nickel/hydrogen batteries was developed. Nickel electrodes from three major U.S. manufacturers were cycled under various conditions. The condition of the electrodes was monitored using both EIS and traditional electrochemical methods. In order to establish relationships between the status of the electrodes and the acquired impedance spectra, various cycling and electrode parameters were analyzed and compared with the EIS data. Nonlinear least squares (NLS) regression was used for analysis of the impedance data. An equivalent circuit was developed which produced good correlation with the impedance data at all states-of-charge and discharge rates. Problems with the experimental procedure which limit the validity of EIS testing were discussed.
Show less - Date Issued
- 1991
- PURL
- http://purl.flvc.org/fcla/dt/14777
- Subject Headings
- Impedance spectroscopy, Electrochemical analysis, Electric batteries--Electrodes
- Format
- Document (PDF)
- Title
- Electrochemical impedance spectroscopy of nickel-hydrogen and silver oxide-metal hydride secondary batteries.
- Creator
- Nechev, Kamen S., Florida Atlantic University, Lipka, Stephen M., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Full nickel-hydrogen (Ni-H2) boilerplate batteries were cycled and impedance measurements were made at different states-of-charge (SOC), electrolyte concentrations and charge/discharge rates. Experiments were conducted on cells containing new and cycled (11,000 cycles) electrodes. Additionally, an EIS study of Ni-H2 flightweight IPV satellite cells was performed. A number of experiments were conducted on silver oxide-metal hydride batteries. The interest was focused on both negative and...
Show moreFull nickel-hydrogen (Ni-H2) boilerplate batteries were cycled and impedance measurements were made at different states-of-charge (SOC), electrolyte concentrations and charge/discharge rates. Experiments were conducted on cells containing new and cycled (11,000 cycles) electrodes. Additionally, an EIS study of Ni-H2 flightweight IPV satellite cells was performed. A number of experiments were conducted on silver oxide-metal hydride batteries. The interest was focused on both negative and positive electrodes and upon the system itself. This work was preliminary and aided in describing the general performance of the battery. For analysis, the data was fitted to an equivalent electrical circuit using the Nonlinear Least Squares Method (NLSM). The correlation between theoretical and empirical data was sufficiently good.
Show less - Date Issued
- 1993
- PURL
- http://purl.flvc.org/fcla/dt/14958
- Subject Headings
- Nickel-hydrogen batteries, Electrodes, Nickel, Impedance spectroscopy, Electrochemical analysis, Electric batteries--Electrodes
- Format
- Document (PDF)
- Title
- Microfluidic Electrical Impedance Spectroscopy for Blood Analysis.
- Creator
- Rikhtehgaran, Samaneh, Wille, Luc T., Du, E., Florida Atlantic University, Department of Physics, Charles E. Schmidt College of Science
- Abstract/Description
-
The study of the electrical properties of red blood cells (RBCs) plays a crucial role in advancing our understanding of human health. As RBCs age, they undergo changes that affect hemorheology and blood microcirculation, which have far-reaching implications for disease research. Furthermore, the shortage of RBC storage units can be a major issue for patients, underscoring the importance of characterizing RBC aging with respect to cell densities. In individuals with abnormal hemoglobin disease...
Show moreThe study of the electrical properties of red blood cells (RBCs) plays a crucial role in advancing our understanding of human health. As RBCs age, they undergo changes that affect hemorheology and blood microcirculation, which have far-reaching implications for disease research. Furthermore, the shortage of RBC storage units can be a major issue for patients, underscoring the importance of characterizing RBC aging with respect to cell densities. In individuals with abnormal hemoglobin disease, alterations in hemoglobin and its functionality can modify the volume and density of RBCs, making their study even more crucial. To this end, our aim is to investigate the impedance alterations of RBCs after distributing them into different layers based on their densities. We have developed a novel method for non-invasive, rapid, and real-time single-cell analysis of RBCs. Our approach involves the use of electrical impedance spectroscopy (EIS) to study the cells after performing cell fractionation. Our studies indicate an increasing trend for RBC resistance and a decreasing trend for the cell membrane as the density of the layer increases. Additionally, we have developed a method for extracting hemoglobin with high purity from fresh samples of RBCs. By passing lysed RBCs through ultrafiltration devices and removing debris and membranes, we were able to isolate hemoglobin. Using the EIS technique, we studied the alterations of impedance over a frequency range, obtaining valuable insight into the electrical properties of hemoglobin.
Show less - Date Issued
- 2023
- PURL
- http://purl.flvc.org/fau/fd/FA00014223
- Subject Headings
- Blood--Analysis, Erythrocytes--Aging, Hemorheology, Electrical impedance spectroscopy, Microfluidics
- Format
- Document (PDF)