Current Search: Drosophila (x)
View All Items
Pages
- Title
- Characterization of Lis-1 loss of function at the neuromuscular junction of Drosophila melangaster larvae.
- Creator
- Vargas, Leticia, Boerner, Jana, Godenschwege, Tanja A.
- Date Issued
- 2013-04-05
- PURL
- http://purl.flvc.org/fcla/dt/3361219
- Subject Headings
- Lissencephaly, Drosophila melanogaster, Mutations
- Format
- Document (PDF)
- Title
- Frazzled and netrin: a story of neuronal confusion and competition in the drosophila giant fiber system.
- Creator
- Orr, Brian, Murphey, Rodney K., Graduate College
- Date Issued
- 2011-04-08
- PURL
- http://purl.flvc.org/fcla/dt/3164669
- Subject Headings
- Neural circuitry, Drosophila, Synapses
- Format
- Document (PDF)
- Title
- Genetic and Neural Mechanisms Regulating the Interaction Between Sleep and Metabolism in Drosophila Melanogaster.
- Creator
- Yurgel, Maria E., Keene, Alex C., Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Dysregulation of sleep and metabolism has enormous health consequences. Sleep loss is linked to increased appetite and insulin insensitivity, and epidemiological studies link chronic sleep deprivation to obesity-related disorders. Interactions between sleep and metabolism involve the integration of signalling from brain regions regulating sleep, feeding, and metabolism, as well as communication between the brain and peripheral organs. In this series of studies, using the fruit fly as a model...
Show moreDysregulation of sleep and metabolism has enormous health consequences. Sleep loss is linked to increased appetite and insulin insensitivity, and epidemiological studies link chronic sleep deprivation to obesity-related disorders. Interactions between sleep and metabolism involve the integration of signalling from brain regions regulating sleep, feeding, and metabolism, as well as communication between the brain and peripheral organs. In this series of studies, using the fruit fly as a model organism, we investigated how feeding information is processed to regulate sleep, and how peripheral tissues regulate sleep through the modulation of energy stores. In order to address these questions, we performed a large RNAi screen to identify novel genetic regulators of sleep and metabolism. We found that, the mRNA/DNA binding protein, Translin (trsn), is necessary for the acute modulation of sleep in accordance with feeding state. Flies mutant for trsn or selective knockdown of trsn in Leucokinin (Lk) neurons abolishes starvation-induced sleep suppression. In addition, genetic silencing of Lk neurons or a mutation in the Lk locus also disrupts the integration between sleep and metabolism, suggesting that Lk neurons are active during starvation. We confirmed this hypothesis by measuring baseline activity during fed and starved states. We found that LHLK neurons, which have axonal projections to sleep and metabolic centers of the brain, are more active during starvation. These findings suggest that LHLK neurons are modulated in accordance with feeding state to regulate sleep. Finally, to address how peripheral tissues regulate sleep, we performed an RNAi screen, selectively knocking down genes in the fat body. We found that knockdown of Phosphoribosylformylglycinamidine synthase (Ade2), a highly conserved gene involved the biosynthesis of purines, regulates sleep and energy stores. Flies heterozygous for two Ade2 mutations are short sleepers and this effect is partially rescued by restoring Ade2 to the fly fat body. These findings suggest Ade2 functions within the fat body to promote both sleep and energy storage, providing a functional link between these processes. Together, the experimental evidence presented here provides an initial model for how the peripheral tissues communicate to the brain to modulate sleep in accordance with metabolic state.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00013163
- Subject Headings
- Drosophila melanogaster, Sleep, Metabolism
- Format
- Document (PDF)
- Title
- Genetic and Neuronal Integration of Sleep and Feeding.
- Creator
- Murphy, Keith Richard, Ja, William W., Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Accumulating evidence points to a fundamental connection between sleep and feeding behavior. However, the temporal, genetic, and neuronal architecture that defines these relationships is poorly understood. Drosophila are amenable to high-throughput studies and offer numerous genetic tools which have advanced our understanding of the mechanistic relationships between these behaviors. However, certain features of the sleep-feeding axis have remained elusive, largely due to the separate...
Show moreAccumulating evidence points to a fundamental connection between sleep and feeding behavior. However, the temporal, genetic, and neuronal architecture that defines these relationships is poorly understood. Drosophila are amenable to high-throughput studies and offer numerous genetic tools which have advanced our understanding of the mechanistic relationships between these behaviors. However, certain features of the sleep-feeding axis have remained elusive, largely due to the separate measurement of sleep and feeding. Here, I develop a system which simultaneously measures sleep and feeding in individual animals by employing high resolution machine vision tracking and micro-controller interface functionality. Using this system, I show that food consumption drives a transient rise in sleep, which depends on food quality, quantity, and timing of a meal. The leucokinin system mediates these effects, particularly in response to protein ingestion. We further use the system to examine sleep homeostasis and demonstrate sleep dependence on energy expenditure and fat-brain communication. Collectively, these findings provide novel insight into the fundamental connections between sleep and feeding behavior.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00005972
- Subject Headings
- Sleep, Feeding, Drosophila
- Format
- Document (PDF)
- Title
- Optogenetic dissection of dopamine subpopulations in Drosophila reveals interplay between reward and aversion.
- Creator
- Alshakarchi, Zainab, Duboue, Erik, Florida Atlantic University, Department of Biological Sciences, Charles E. Schmidt College of Science
- Abstract/Description
-
Dopamine is an essential component in the neural pathway for attractive and aversive behavior. Dopaminergic (DA) neurons are known to have a key role in neurotransmission which can result in the modulation of different behaviors as well as the manifestation of different mental health disorders. Drosophila share similar genetics that are associated with several neurodegenerative diseases and disorders in humans. Furthermore, previous studies have shown conservation of DA neurons between humans...
Show moreDopamine is an essential component in the neural pathway for attractive and aversive behavior. Dopaminergic (DA) neurons are known to have a key role in neurotransmission which can result in the modulation of different behaviors as well as the manifestation of different mental health disorders. Drosophila share similar genetics that are associated with several neurodegenerative diseases and disorders in humans. Furthermore, previous studies have shown conservation of DA neurons between humans and Drosophila which facilitate research using Drosophila as a model organism. In this study, we initially developed and tested a novel optogenetics system, which targeted neurons with spatial specificity, that activated or inhibited neurons through channelrhodopsin microbial opsins that are sensitive to red light. This system was then used to investigate the DA subsets that mediate attractive and aversive behavior. The activation of PPL1 clusters mostly resulted in aversive behavior as aligned with the literature, however activation of clusters with output neurons (PPL1 & PAM) concluded with different results.
Show less - Date Issued
- 2021
- PURL
- http://purl.flvc.org/fau/fd/FA00013868
- Subject Headings
- Drosophila, Dopaminergic Neurons, Optogenetics
- Format
- Document (PDF)
- Title
- Effects of anoxia on methionine sulfoxide reductase (Msr) deficient drosophila.
- Creator
- Howard, Danielle, Binninger, David
- Date Issued
- 2013-04-05
- PURL
- http://purl.flvc.org/fcla/dt/3361093
- Subject Headings
- Anoxia, Drosophila, Reactive Oxygen Species
- Format
- Document (PDF)
- Title
- GENETIC SCREENS IDENTIFY NOVEL REGULATORS OF SLEEP AND METABOLISM IN DROSOPHILA MELANOGASTER.
- Creator
- Murakami, Kazuma N., Keene, Alex C., Florida Atlantic University, Department of Biological Sciences, Charles E. Schmidt College of Science
- Abstract/Description
-
Proper regulation of sleep and metabolism are critical to the survival of all organisms. In humans, dysregulation of sleep is linked to metabolic syndrome, including hypertension, hyperglycemia and hyperlipidemia. However, the mechanisms regulating interactions between sleep and metabolism are poorly understood. Although the fruit fly, Drosophila melanogaster, bears little anatomical resemblance to humans, it shares similar genetics essential in understanding normal development and disease in...
Show moreProper regulation of sleep and metabolism are critical to the survival of all organisms. In humans, dysregulation of sleep is linked to metabolic syndrome, including hypertension, hyperglycemia and hyperlipidemia. However, the mechanisms regulating interactions between sleep and metabolism are poorly understood. Although the fruit fly, Drosophila melanogaster, bears little anatomical resemblance to humans, it shares similar genetics essential in understanding normal development and disease in humans. From humans to flies, many disease-related genes and pathways are highly conserved, rendering the fruit fly ideal to understanding the interactions between sleep and metabolism. Therefore, using the fruit fly provides a framework for understanding how genes function between sleep and metabolism. During starvation, both humans and rats reduce their sleep. Similarly, previous studies have shown that fruit flies also suppress sleep to forage for food, further showing that sleep and metabolism are intricately tied to one another and that they are highly conserved across species. To further explore the interactions between sleep and metabolism, I have conducted multiple genetic screens to identify novel regulators of sleep-metabolism interactions. These experiments led to the identification of the mRNA binding protein translin (trsn) as being required for starvation-induced sleep suppression. A second screen that targeted metabolic genes from a genome-wide association study identified the ion channel accessory protein uncoordinated 79 (unc79) as a critical regulator of both sleep duration and starvation resistance. The genes function in different regions of the brain and suggest complex neural circuitry is likely to underlie regulation of sleep metabolism interactions. Taken together, a mechanistic understanding of how different genes function to regulate sleep in flies will further our understanding of how sleep and metabolism is regulated in humans.
Show less - Date Issued
- 2021
- PURL
- http://purl.flvc.org/fau/fd/FA00013722
- Subject Headings
- Drosophila melanogaster, Sleep, Genetic screening
- Format
- Document (PDF)
- Title
- Does methionine sulfoxide reductase have a role in maintaining adequate dopamine levels in drosophila melanogaster?.
- Creator
- Hernandez, Caesar, Binninger, David, Graduate College
- Date Issued
- 2013-04-12
- PURL
- http://purl.flvc.org/fcla/dt/3361311
- Subject Headings
- Drosophila melanogaster, Methionine Sulfoxide Reductases, Dopamine
- Format
- Document (PDF)
- Title
- Generation of a Dichaete Gal4 strain in Drosophila Melanogaster.
- Creator
- Alif, Razan, Nambu, John R, Graduate College
- Date Issued
- 2011-04-08
- PURL
- http://purl.flvc.org/fcla/dt/3164456
- Subject Headings
- Drosophila melanogaster --Embryology, Mammals --Embryology, Y chromosome
- Format
- Document (PDF)
- Title
- Alternative Biological Roles of Methionine Sulfoxide Reductases in Drosophila melanogaster.
- Creator
- Wilson, Kelsey, Binninger, David, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
The oxidation of methionine (Met) into methionine sulfoxide (met-(o)) leads to deleterious modifications to a variety of cellular constituents. These deleterious alterations can be reversed by enzymes known as methionine sulfoxide reductases (Msr). The Msr (MsrA and MsrB) family of enzymes have been studied extensively for their biological roles in reducing oxidized Met residues back into functional Met. A wide range of studies have focused on Msr both in vivo and in vitro using a variety of...
Show moreThe oxidation of methionine (Met) into methionine sulfoxide (met-(o)) leads to deleterious modifications to a variety of cellular constituents. These deleterious alterations can be reversed by enzymes known as methionine sulfoxide reductases (Msr). The Msr (MsrA and MsrB) family of enzymes have been studied extensively for their biological roles in reducing oxidized Met residues back into functional Met. A wide range of studies have focused on Msr both in vivo and in vitro using a variety of model organisms. More specifically, studies have noted numerous processes affected by the overexpression, under expression, and silencing of MsrA and MsrB. Collectively, the results of these studies have shown that Msr is involved in lifespan and the management of oxidative stress. More recent evidence is emerging that supports existing biological functions of Msr and theorizes the involvement of Msr in numerous biological pathways.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00005980
- Subject Headings
- Drosophila melanogaster, Methionine Sulfoxide Reductases, Oxidative stress
- Format
- Document (PDF)
- Title
- Characterizing electroconvulsive seizure recovery time in the invertebrate model systems Caenorhabditis elegans and Drosophila melanogaster.
- Creator
- Risley, Monica G., Dawson-Scully, Ken, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Seizures are a symptom of epilepsy, characterized by spontaneous firing due to an imbalance of excitatory and inhibitory features. While mammalian seizure models receive the most attention, the simplicity and tractability of invertebrate model systems, specifically C. elegans and D. melanogaster, have many advantages in understanding the molecular and cellular mechanisms of seizure behavior. This research explores C. elegans and D. melanogaster as electroconvulsive seizure models to...
Show moreSeizures are a symptom of epilepsy, characterized by spontaneous firing due to an imbalance of excitatory and inhibitory features. While mammalian seizure models receive the most attention, the simplicity and tractability of invertebrate model systems, specifically C. elegans and D. melanogaster, have many advantages in understanding the molecular and cellular mechanisms of seizure behavior. This research explores C. elegans and D. melanogaster as electroconvulsive seizure models to investigate methods to both modulate and better understand seizure susceptibility. A common underlying feature of seizures in mammals, worms, and flies involves regulating excitation and inhibition. The C. elegans locomotor circuit is regulated via well characterized GABAergic and cholingeric motoneurons that innervate two rows of dorsal and ventral body wall muscles. In this research, we developed an electroconvulsive seizure assay which utilizes the locomotor circuit as a behavioral read out of neuronal function. When inhibition is decreased in the circuit, for example by decreasing GABAergic input, we find a general increase in the time to recovery from a seizure. After establishing the contribution of excitation and inhibition to seizure recovery, we explored a ubiquitin ligase, associated with comorbidity of an X-linked Intellectual Disorder and epilepsy in humans, and established that the worm homolog, eel-1, contributes to seizure susceptibility similarly to the human gene. Next, we investigated a cGMP-dependent protein kinase (PKG) that functions in the nervous system of both worms and flies and determined that increasing PKG activity, decreases the time to recovery from an electroconvulsive seizure. These experiments suggest a potential novel role for a major protein, PKG, in seizure susceptibility and that the C. elegans and D. melanogaster electroconvulsive seizure assays can be used to investigate possible genes involved in seizure susceptibility and future therapeutic to treat epilepsy.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00005954
- Subject Headings
- Seizures, Epilepsy, Drosophila melanogaster, Caenorhabditis elegans
- Format
- Document (PDF)
- Title
- Effects of Serotonin Modulation on Methionine Sulfoxide Reductase Deficient Drosophila melanogaster.
- Creator
- Hamadeh, Ali, Binninger, David, Florida Atlantic University, Department of Biological Sciences, Charles E. Schmidt College of Science
- Abstract/Description
-
Methionine sulfoxide reductase (MSR) is an important antioxidant to help mitigate oxidative stress that contributes to age-associated neurodegenerative diseases, such as Alzheimer’s Disease and Parkinson’s Disease. In MSR deficient Drosophila melanogaster (fruit flies), larvae show a developmental delay like that seen when wild-type larvae are reared on nutrient deficit culture medium. These investigators further showed that serotonin levels were depressed in these nutrient deficient larvae....
Show moreMethionine sulfoxide reductase (MSR) is an important antioxidant to help mitigate oxidative stress that contributes to age-associated neurodegenerative diseases, such as Alzheimer’s Disease and Parkinson’s Disease. In MSR deficient Drosophila melanogaster (fruit flies), larvae show a developmental delay like that seen when wild-type larvae are reared on nutrient deficit culture medium. These investigators further showed that serotonin levels were depressed in these nutrient deficient larvae. The overarching aim of this study was to better understand the role of serotonin in MSR regulated physiology. Supplementing food with serotonin partially rescued the slower mouth hook movements (MHM) observed in the MSR-deficient flies. However, supplementation with serotonin altering drugs that cross the blood brain barrier (5-hydroxytryptophan, fluoxetine, or paravi chlorophenylalanine) did not rescue MHM and caused impairments to the growth of larvae during development. This study indicates that serotonin regulates feeding behavior partially through the regulation of MSR production but acts independently to regulate development.
Show less - Date Issued
- 2021
- PURL
- http://purl.flvc.org/fau/fd/FA00013761
- Subject Headings
- Drosophila melanogaster, Methionine sulfoxide reductase, Serotonin
- Format
- Document (PDF)
- Title
- Discovery and biological characterization of conotoxins from the venom of Conus Brunneus in Drosophila Melanogaster.
- Creator
- Heghinian, Mari D., Mari, Frank, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Chemistry and Biochemistry
- Abstract/Description
-
Cone snails are venomous marine predators whose venom is a complex mixture of modified peptides (conopeptides). Conopeptides have direct specificity towards voltage- and ligand-gated ion channels and G-protein coupled receptors. More specifically, alpha conotoxins target nicotinic acetylcholine receptors (nAChR) and are of great interest as probes for different nAChR subtypes involved in a broad range of neurological function. Typically, the amount of peptide provided directly from the cone...
Show moreCone snails are venomous marine predators whose venom is a complex mixture of modified peptides (conopeptides). Conopeptides have direct specificity towards voltage- and ligand-gated ion channels and G-protein coupled receptors. More specifically, alpha conotoxins target nicotinic acetylcholine receptors (nAChR) and are of great interest as probes for different nAChR subtypes involved in a broad range of neurological function. Typically, the amount of peptide provided directly from the cone snails (from either dissected or “milked” venom) is minimal, thus hindering the wide use of bioassay-guided approaches for compound discovery. Biochemical-based approaches for discovery by means of identification and characterization of venom components can be used due to their compatibility with the small quantities of cone snail venom available; however, no direct assessment of the bioactivity can be gleaned from these approaches. Therefore, newly discovered conotoxins must be acquired synthetically, which can be difficult due to their complicated folding motifs. The ability to test small quantities of peptide for bioactivity during the purification process can lead to the discovery of novel components using more direct approaches. Presented here is the description of use of an effective method of bioassay-guided fractionation for the discovery of novel alpha conotoxins as well as further biological characterization of other known alpha conotoxins. This method requires minimal amounts of sample and evaluates, via in vivo electrophysiological measurements, the effect of conotoxins on the functional outputs of a well-characterized neuronal circuit in Drosophila melanogaster known as the giant fiber system. Our approach uses reversed-phase HPLC fractions from venom dissected from the ducts of Conus brunneus in addition to synthetic alpha conotoxins. Fractions were individually tested for activity, re-fractionated, and re-tested to narrow down the compound responsible for activity. A novel alpha conotoxin, bru1b, was discovered via the aforementioned approach. It has been fully characterized in the giant fiber system through the use of mutant flies, as well as tested in Xenopus oocytes expressing nicotinic acetylcholine channels and against the acetylcholine binding protein. Other well-known alpha conotoxins have also been characterized in the giant fiber system.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004122, http://purl.flvc.org/fau/fd/FA00004122
- Subject Headings
- Drosophila melanogaster, Gastropoda -- venom, Peptides -- Structure, Venom
- Format
- Document (PDF)
- Title
- FRAZZLED/DCC REGULATES SYNAPTOGENESIS AT A DROSOPHILA GIANT SYNAPSE.
- Creator
- Lopez, Juan, Murphey, Rodney, Florida Atlantic University, Department of Biological Sciences, Charles E. Schmidt College of Science
- Abstract/Description
-
Synaptogenesis is a requirement for cellular communication, but the specific molecular mechanisms underlying synaptogenesis are unclear. Here, we investigate and show the role of the protein Frazzled in synaptogenesis using the transheterozygous Frazzled loss-of-function (LOF) mutant in Drosophila. Leveraging the UAS-GAL4 expression system, we drove expression of various Frazzled/DCC gene constructs in the Giant Fibers (GF) of flies and found changes to synaptogenesis and axon pathfinding. We...
Show moreSynaptogenesis is a requirement for cellular communication, but the specific molecular mechanisms underlying synaptogenesis are unclear. Here, we investigate and show the role of the protein Frazzled in synaptogenesis using the transheterozygous Frazzled loss-of-function (LOF) mutant in Drosophila. Leveraging the UAS-GAL4 expression system, we drove expression of various Frazzled/DCC gene constructs in the Giant Fibers (GF) of flies and found changes to synaptogenesis and axon pathfinding. We identified decreases in electrical synaptogenesis and distinct axon pathfinding errors in Frazzled LOF mutants. Strikingly, the expression of Frazzled intracellular domain (ICD) significantly rescues both phenotypes, while full-length Frazzled protein only partially rescues these phenotypes, prompting us to explore the role of different domains within the protein. Deleting the P1 and P2 domains of Frazzled does not rescue axon pathfinding but did partially rescue synaptogenesis while deleting the P3 domain failed to rescue either phenotype. Moreover, when we drive expression Frazzled with a point-mutated P3 domain, silencing its transcriptional activation domain, it fails to rescue both synaptogenesis and axon pathfinding. These results strongly suggest that Frazzled regulates both synaptogenesis and axon pathfinding in the GFs and is necessary for synaptogenesis of the mixed electrochemical GF synapse. Our results provide novel insights into the molecular mechanisms governing neural circuit assembly and highlight Frazzled as a key player in axon guidance and synaptic development.
Show less - Date Issued
- 2023
- PURL
- http://purl.flvc.org/fau/fd/FA00014310
- Subject Headings
- Drosophila, Synapses, Gap Junctions, Receptors, Cell Surface
- Format
- Document (PDF)
- Title
- Dscam1 Regulates Synapse Formation and Function in the Giant Fiber System of Drosophila.
- Creator
- Spencer, Casey L., Murphey, Rodney, Florida Atlantic University, Department of Biological Sciences, Charles E. Schmidt College of Science
- Abstract/Description
-
Proper formation of synapses in the developing nervous system is critical to the expected function and behavior of an adult organism. Neurons must project neurites, in the form of axons or dendrites, to target areas to complete synaptic circuits. The biochemical tool that cells use to interact with the external environment and direct the guidance of developing neurites are guidance receptors. One such guidance receptor that is extensively studied to uncover its roles in developmental...
Show moreProper formation of synapses in the developing nervous system is critical to the expected function and behavior of an adult organism. Neurons must project neurites, in the form of axons or dendrites, to target areas to complete synaptic circuits. The biochemical tool that cells use to interact with the external environment and direct the guidance of developing neurites are guidance receptors. One such guidance receptor that is extensively studied to uncover its roles in developmental disorders and disease is DSCAM (Down-Syndrome Cell Adhesion Molecule). To better understand the role of DSCAM in humans, a fly homolog Dscam1 was extensively characterized in the giant fiber system (GFS) of Drosophila to further explore its roles in axon guidance, synapse formation, and synapse function. The UAS-Gal4 system was used to alter the protein levels of Dscam1 within the giant fiber interneurons (GFs). A UAS-RNAi construct against Dscam1 was used to knockdown translation of all possible isoforms within the GFs. A UAS-Dscam1(TM2) construct was used to overexpress a single isoform of Dscam1 that is specifically trafficked to the axons. Confocal microscopy was used to determine the morphological changes associated with dysregulated Dscam1 levels. Visualization via fluorescent markers was accomplished of both pre- and post-synaptic cells, the GFs and tergotrochanteral motorneurons (TTMns), respectively, and synapse interface was determined as colocalization of the two cells. Additionally, the functional components of the GF-TTMn synapse, both gap-junctions, and presynaptic chemical active zones were tagged via fluorescent antibodies and quantified.
Show less - Date Issued
- 2023
- PURL
- http://purl.flvc.org/fau/fd/FA00014364
- Subject Headings
- Drosophila, Cell Adhesion Molecules, Nervous System, Synapses
- Format
- Document (PDF)
- Title
- Development of a novel assay for in vivo screening of neuromodulatory drugs and targeted disruption of cholinergic synaptic transmission in Drosophila melanogaster.
- Creator
- Mejia, Monica, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Finding novel compounds that affect neuronal or muscular function is of great interest, as they can serve as potential pharmacological agents for a variety of neurological disorders. For instance, conopeptides have been developed into powerful drugs like the painkiller PrialtTM. Most conopeptides, however, have yet to be characterized, revealing the need for a rapid and straightforward screening method. We have designed a novel bioassay, which allows for unbiased screening of biological...
Show moreFinding novel compounds that affect neuronal or muscular function is of great interest, as they can serve as potential pharmacological agents for a variety of neurological disorders. For instance, conopeptides have been developed into powerful drugs like the painkiller PrialtTM. Most conopeptides, however, have yet to be characterized, revealing the need for a rapid and straightforward screening method. We have designed a novel bioassay, which allows for unbiased screening of biological activity of compounds in vivo against numerous molecular targets on a wide variety of neurons and muscles in a rapid and straightforward manner. For this, we paired nanoinjection of compounds with electrophysiological recordings from the Giant Fiber System of Drosophila melanogaster, which mediates the escape response of the fly.
Show less - Date Issued
- 2013
- PURL
- http://purl.flvc.org/fcla/dt/3362560
- Subject Headings
- Drosophila melanogaster, Genetics, Drosophila melanogaster, Life cycles, Insects, Physiology, Developmental neurobiology, Neural transmission, Cholinergic mechanisms
- Format
- Document (PDF)
- Title
- Analysis of Drosophila Sox gene expression in the intestinal stem cell lineage.
- Creator
- Boucekkine, Houda, Nambu, John R.
- Date Issued
- 2012-04-06
- PURL
- http://purl.flvc.org/fcla/dt/3351386
- Subject Headings
- Drosophila, SOX, Intestinal stem cell, Digestive system, Stem cell biology
- Format
- Document (PDF)
- Title
- Frazzled’s Role in Synapse Formation at a Drosophila Giant Synapse.
- Creator
- Lopez, Juan, Murphey, Rodney K., Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
In Drosophila melanogaster, the GFS is synaptically coupled to the Tergotrochanteral motoneurons; these neurons form a signaling pathway from the brain to the jump muscles (Thomas and Wyman, 1983). Part of this signaling is done through gap junctions, and placement of these gap junctions was partially shown to be regulated by the binding of Netrin, a class of guidance molecule (Orr et al., 2014). In the present study we investigate the role of Netrin's receptor Frazzled in the placement of...
Show moreIn Drosophila melanogaster, the GFS is synaptically coupled to the Tergotrochanteral motoneurons; these neurons form a signaling pathway from the brain to the jump muscles (Thomas and Wyman, 1983). Part of this signaling is done through gap junctions, and placement of these gap junctions was partially shown to be regulated by the binding of Netrin, a class of guidance molecule (Orr et al., 2014). In the present study we investigate the role of Netrin's receptor Frazzled in the placement of gap junctions in Drosophila at: 1) Presynaptic neurons (Giant Fibers [GF]), 2) Postsynaptic neurons (Tergotrochanteral motoneurons [TTMn]), and 3) Presynaptic + Postsynaptic neurons simultaneously. Effects of Frazzled were tested using Frazzled RNAi and a combination of electrophysiological recordings and imaging of the GF-TTMn synapse. The results from this study show that presynaptic and postsynaptic knockdown of Frazzled delayed muscular responses and altered the anatomy of both the GF's and TTMn's.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00013085
- Subject Headings
- Drosophila melanogaster--Nervous system., Gap Junctions., Synapses., Netrin Receptors.
- Format
- Document (PDF)
- Title
- HISTAMINERGIC AND NOCICEPTIVE GROOMING IN DROSOPHILA MELANOGASTER: AN ANALYSIS OF THE MOLECULAR MECHANISMS AND A BEHAVIORAL RESPONSE TO NOXIOUS CHEMICAL STIMULI.
- Creator
- John, Ciny, Dawson-Scully, Ken, Murphey, Rodney, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Insect grooming has various functions, including defense against parasites and pathogens, cleaning of dust particles, and maintenance of sensory receptors. The hierarchy of grooming behavior suggests that cleaning one body part is more crucial than the other, the priority order more specifically being eyes, antennae, abdomen, then wings, followed by the thorax. Histamine is an extensively studied neurotransmitter found in the central nervous system of many animals. In Drosophila, histamine is...
Show moreInsect grooming has various functions, including defense against parasites and pathogens, cleaning of dust particles, and maintenance of sensory receptors. The hierarchy of grooming behavior suggests that cleaning one body part is more crucial than the other, the priority order more specifically being eyes, antennae, abdomen, then wings, followed by the thorax. Histamine is an extensively studied neurotransmitter found in the central nervous system of many animals. In Drosophila, histamine is found in both the peripheral and central nervous systems and is necessary for visual and mechanosensory behaviors. Histamine-gated chloride channel 1 (HisCl1) and Ora transientless (Ort) are two characterized histamine receptors, both of which are vital for visual signaling in the fly.
Show less - Date Issued
- 2019
- PURL
- http://purl.flvc.org/fau/fd/FA00013321
- Subject Headings
- Drosophila melanogaster, Grooming behavior in animals, Nociception, Histaminergic mechanisms
- Format
- Document (PDF)
- Title
- The Effects of MsrA and MsrB in Anoxia Tolerance in Aging Drosophila melanogaster.
- Creator
- Suthakaran, Nirthieca, Binninger, David, Florida Atlantic University, Charles E. Schmidt College of Medicine, Department of Biomedical Sciences
- Abstract/Description
-
Drosophila melanogaster tolerates several hours of anoxia (the absence of oxygen) by entering a protective coma. A burst of reactive oxygen species (ROS) is produced when oxygen is reintroduced to the cells. ROS causes oxidative damage to critical cellular molecules, which contribute to aging and development of certain agerelated conditions. The amino acid, methionine, is susceptible to oxidation, although this damage can be reversed by methionine sulfoxide reductases (Msr). This project...
Show moreDrosophila melanogaster tolerates several hours of anoxia (the absence of oxygen) by entering a protective coma. A burst of reactive oxygen species (ROS) is produced when oxygen is reintroduced to the cells. ROS causes oxidative damage to critical cellular molecules, which contribute to aging and development of certain agerelated conditions. The amino acid, methionine, is susceptible to oxidation, although this damage can be reversed by methionine sulfoxide reductases (Msr). This project investigates the effect of Msr-deficiency on anoxia tolerance in Drosophila throughout the lifespan of the animal. The data show that the time for recovery from the protective comma as well as the survival of the animals lacking any Msr activity depends on how quickly the coma is induced by the anoxic conditions. Insight into the roles(s) of Msr genes under anoxic stress can lead us to a path of designing therapeutic drugs around these genes in relation to stroke.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00013046
- Subject Headings
- Drosophila melanogaster, Methionine Sulfoxide Reductases, Anoxia, Aging, Oxidative stress
- Format
- Document (PDF)