Current Search: Drosophila melanogaster -- Life cycles (x)
View All Items
- Title
- Development of a novel assay for in vivo screening of neuromodulatory drugs and targeted disruption of cholinergic synaptic transmission in Drosophila melanogaster.
- Creator
- Mejia, Monica, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Finding novel compounds that affect neuronal or muscular function is of great interest, as they can serve as potential pharmacological agents for a variety of neurological disorders. For instance, conopeptides have been developed into powerful drugs like the painkiller PrialtTM. Most conopeptides, however, have yet to be characterized, revealing the need for a rapid and straightforward screening method. We have designed a novel bioassay, which allows for unbiased screening of biological...
Show moreFinding novel compounds that affect neuronal or muscular function is of great interest, as they can serve as potential pharmacological agents for a variety of neurological disorders. For instance, conopeptides have been developed into powerful drugs like the painkiller PrialtTM. Most conopeptides, however, have yet to be characterized, revealing the need for a rapid and straightforward screening method. We have designed a novel bioassay, which allows for unbiased screening of biological activity of compounds in vivo against numerous molecular targets on a wide variety of neurons and muscles in a rapid and straightforward manner. For this, we paired nanoinjection of compounds with electrophysiological recordings from the Giant Fiber System of Drosophila melanogaster, which mediates the escape response of the fly.
Show less - Date Issued
- 2013
- PURL
- http://purl.flvc.org/fcla/dt/3362560
- Subject Headings
- Drosophila melanogaster, Genetics, Drosophila melanogaster, Life cycles, Insects, Physiology, Developmental neurobiology, Neural transmission, Cholinergic mechanisms
- Format
- Document (PDF)
- Title
- Neuroprotection During Acute Oxidative Stress: Role of the PKG Pathway and Identification of Novel Neuromodulatory Agents Using Drosophila Melanogaster.
- Creator
- Caplan, Stacee Lee, Dawson-Scully, Ken, Milton, Sarah L., Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Oxidant stress and injury is inherent in many human diseases such as ischemic vascular and respiratory diseases, heart failure, myocardial infarction, stroke, perinatal and placental insufficiencies, diabetes, cancer, and numerous psychiatric and neurodegenerative disorders. Finding novel therapeutics to combat the deleterious effects of oxidative stress is critical to create better therapeutic strategies for many conditions that have few treatment options. This study used the anoxia-tolerant...
Show moreOxidant stress and injury is inherent in many human diseases such as ischemic vascular and respiratory diseases, heart failure, myocardial infarction, stroke, perinatal and placental insufficiencies, diabetes, cancer, and numerous psychiatric and neurodegenerative disorders. Finding novel therapeutics to combat the deleterious effects of oxidative stress is critical to create better therapeutic strategies for many conditions that have few treatment options. This study used the anoxia-tolerant fruit fly, Drosophila melanogaster, to investigate endogenous cellular protection mechanisms and potential interactions to determine their ability to regulate synaptic functional tolerance and cell survival during acute oxidative stress. The Drosophila larval neuromuscular junction (NMJ) was used to analyze synaptic transmission and specific motor axon contributions. Drosophila Schneider 2 (S2) cells were used to assess viability. Acute oxidative stress was induced using p harmacological paradigms that generate physiologically relevant oxidant species: mitochondrial superoxide production induced by sodium azide (NaN3) and hydroxyl radical formation via hydrogen peroxide (H2O2). A combination of genetic and pharmacological approaches were used to explore the hypothesis that endogenous protection mechanisms control cellular responses to stress by manipulating ion channel conductance and neurotransmission. Furthermore, this study analyzed a group of marine natural products, pseudopterosins, to identify compounds capable of modulating synaptic transmission during acute oxidative stress and potential novel neuromodulatory agents.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004487, http://purl.flvc.org/fau/fd/FA00004487
- Subject Headings
- Drosophila melanogaster -- Life cycles, Oxidative stress -- Ecophysiology, Oxidative stress -- Prevention, Protein kinases, Proteins -- Chemical modification
- Format
- Document (PDF)
- Title
- Neuroprotection during anoxic-stress in Drosophila melanogaster: the role of PKG pathway on protection of function and survival.
- Creator
- Benasayag Meszaros, Raquel, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Anoxia is characterized by an absence of oxygen supply to a tissue (Dawson- Scully et al., 2010). Unlike humans, Drosophila melanogaster is an organism that can survive low oxygen levels for hours without showing any pathology (Lutz et al., 2003) Under anoxia, the fruit fly loses locomotive activity, resulting in an anoxic coma (Haddad et al., 1997). In this study we investigate the influence of five variables for anoxic tolerance in adult Drosophila: 1) anoxic environment (gas vs. drowning),...
Show moreAnoxia is characterized by an absence of oxygen supply to a tissue (Dawson- Scully et al., 2010). Unlike humans, Drosophila melanogaster is an organism that can survive low oxygen levels for hours without showing any pathology (Lutz et al., 2003) Under anoxia, the fruit fly loses locomotive activity, resulting in an anoxic coma (Haddad et al., 1997). In this study we investigate the influence of five variables for anoxic tolerance in adult Drosophila: 1) anoxic environment (gas vs. drowning), 2) anoxia duration, 3) temperature (cold [3ÀC] or room temperature [21ÀC]), 4) age (young 2-9 days and old 35-39 days), and 5) PKG variation. Tolerance to anoxia is measured by the time of recovery and survival of the fruit fly from the anoxic coma. The results from this study show that short stress, low temperature, young age, and low PKG activity increased anoxic tolerance. Our findings will lay the foundation to investigate different variables, genes or pharmacological compounds that can modulate neuronal anoxic tolerance.
Show less - Date Issued
- 2013
- PURL
- http://purl.flvc.org/FAU/3360743
- Subject Headings
- Protein kinases, Oxidativie stress, Prevention, Oxidativie stress, Ecophysiology, Drosophila melanogaster, Life cycles
- Format
- Document (PDF)