Current Search: Drag Aerodynamics (x)
View All Items
- Title
- Utilizing "bills" for drag reduction below transition on spherical bodies.
- Creator
- Adamson, James Edward., Florida Atlantic University, Tennant, Jeffrey S.
- Abstract/Description
-
Russian experimenters Kozlov and Leonenko have reported substantial drag reduction on a sphere using a "bill" or "spike" extending from the body upstream into the flow. A systematic series of experiments was conducted to determine the extent of the reduction and to identify the parameters of the reported drag reduction effect. The tests were performed in the Florida Atlantic University Ocean Engineering Department's Aerolab wind tunnel. A sphere was fitted with tapering bills of various...
Show moreRussian experimenters Kozlov and Leonenko have reported substantial drag reduction on a sphere using a "bill" or "spike" extending from the body upstream into the flow. A systematic series of experiments was conducted to determine the extent of the reduction and to identify the parameters of the reported drag reduction effect. The tests were performed in the Florida Atlantic University Ocean Engineering Department's Aerolab wind tunnel. A sphere was fitted with tapering bills of various lengths, base diameters, and bill/sphere fillet radii. Experiments indicated that the effect was restricted to Reynolds numbers below 4.0 x 10^5 and that the drag of the sphere/spike combination was actually increased at Reynolds numbers greater than this. A smoke generator was used to visualize the drag reduction mechanism, which appears to be a recirculating cell at the base of the sphere/spike intersection.
Show less - Date Issued
- 1989
- PURL
- http://purl.flvc.org/fcla/dt/14514
- Subject Headings
- Drag (Aerodynamics), Wind tunnel models
- Format
- Document (PDF)
- Title
- Dynamic stall and three-dimensional wake effects on isolated rotor trim and stability with experimental correlation and parallel fast-Floquet analysis.
- Creator
- Subramanian, Shanmugasundaram., Florida Atlantic University, Gaonkar, Gopal H., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Hingeless rotors are susceptible to instabilities of the lead-lag or lag modes, which are at best weakly damped. The lag mode derives its damping primarily from the complex rotor flow field that is driven by interdependent dynamics of airfoil stall and rotor downwash or wake. Therefore, lag-damping prediction requires an aerodynamic representation that adequately accounts for quasisteady stall, dynamic stall and three-dimensional dynamic wake. Accordingly, this dissertation investigates these...
Show moreHingeless rotors are susceptible to instabilities of the lead-lag or lag modes, which are at best weakly damped. The lag mode derives its damping primarily from the complex rotor flow field that is driven by interdependent dynamics of airfoil stall and rotor downwash or wake. Therefore, lag-damping prediction requires an aerodynamic representation that adequately accounts for quasisteady stall, dynamic stall and three-dimensional dynamic wake. Accordingly, this dissertation investigates these stall and wake effects on lag damping and demonstrates the strengths and weaknesses of the aerodynamic representation with a comprehensive experimental correlation. The database refers to a three-bladed rotor operated untrimmed and to a fourbladed rotor operated trimmed; for both rotors, the blade collective pitch and shaft tilt angles are set prior to each test run. The untrimmed rotor is tested with advance-ratios as high as 0.55 and shaft angles as high as 20°, and it has intentionally builtin structural simplicity: torsionally stiff blades and no swash plate. The trimmed rotor has torsionally soft blades; it is trimmed in the sense that the longitudinal and lateral cyclic pitch controls are adjusted through a swash plate to minimize l/rev root flap moment. Therefore, for the untrimmed rotor, the database refers to lagdamping levels, and for the trimmed rotor, it refers to lag-damping levels as well as to trim results of lateral and longitudinal cyclic pitch controls and steady root flap moments. The dynamic stall representation is based on the ONERA models of lift, drag and pitching moment, and the unsteady wake is described by a finite-state three-dimensional wake model. The root-flexure-blade assembly of the untrimmed rotor is represented by a root-restrained rigid flap-lag model as well as by an elastic flap-lag-torsion model. Similarly, the trimmed rotor is represented by an elastic flaplag- torsion model. The predictions are from three aerodynamic theories ranging from a quasisteady stall theory to a fairly comprehensive dynamic stall and wake theory. This dissertation also addresses the computational aspects of lag-damping predictions by parallel F!oquct analysis based on classical and fast Floquet theories. In a typical trimmed flight, the Floquet analysis comprises (i) trim or equilibrium analysis, (ii) generation of the Floquet transition matrix (FTM) about the trim position, and (iii) eigenanalysis of the FTM. The trim analysis involves the computations of the unknown control inputs that satisfy flight conditions of required thrust and force-moment equilibrium as well as the initial conditions that guarantee periodic forced response. The shooting method is increasingly used for the trim analysis since it generates the FTM as a byproduct and is not sensitive to damping levels. The QR method is used almost exclusively for the FTM eigenanalysis. Presently, the Floquet analysis with shooting and QR methods is widely used for small-order systems (number of states or order M < 100). However, it has been found to be practical neither for design nor for comprehensive-analysis models that lead to large systems (A11 > 100); the run time on a conventional sequential computer is simply prohibitive. Nevertheless, all three parts of Floquet analysis can be algorithmically structured such that they lend themselves well to parallelism or concurrent computations. Furthermore, the conventional Floquet analysis requires integrations of equations of motion through one complete period T; and the bulk of the run time is for repeated integrations over one period. However, for rotors with Q identical blades, it is computationally advantageous to use the fast Floquet analysis, which requires integration through a period T/Q. Accordingly, this dissertation develops parallel algorithms for classical Floquet analysis with classical shooting and for the fast Floquet analysis with fast shooting; in each case the FTM eigenanalysis is baseJ on a parallel QR tibrary routine. The computational reliability· of the sequential anJ parallel Floquet analyses is quantified by (i) the condition number of the converged Jacobian matrix in Newton iteration of trim analysis, (ii) the condition numbers of the FTM eigenvalues of interest, and (iii) the corresponding residual errors of the eigenpairs (eigenvalue and the corresponding eigenYector). These algorithms are applied to study (i) linear flap stability with dynamic wake, (ii) nonlinear flaplag stability with dynamic wake under propulsive- or flight-trim conditions. and (iii) noniinear fiap-iag stabiiity with dynamic staii and wake under flight trim conditions. The parallel and sequential algorithms are compared with respect to computational reliability, saving in run time and growth of run time with increasing system order. Other parallel performance metrics such as speedup, efficiency, and sequential and parallel fractions are included as well. The computational reliability figures of the four algorithms - classical and fast-Floquet analyses each in sequential and parallel modes - are comparable. The fast-Floquet analysis brings in nearly Q-fold reduction in run time in both the sequential and parallel modes; that is, its advantages apply equally to both the modes. 'While the run times for the classical- and fast-Floquet analyses in sequential mode grow in between quadratically and cubically with the system order, the corresponding run times in parallel mode are far shorter and more importantly remain nearly constant. These results offer considerable promise in making large-scale Floquet analysis practical for rotorcrafts with identical as well as with dissimilar blades.
Show less - Date Issued
- 1996
- PURL
- http://purl.flvc.org/fcla/dt/12462
- Subject Headings
- Rotors (Helicopters), Stalling (Aerodynamics), Drag (Aerodynamics), Wakes (Aerodynamics), Floquet theory
- Format
- Document (PDF)
- Title
- Experimental Investigation of Skin Friction Drag Reduction on a Flat Plate using Microbubbles.
- Creator
- Grabe, Zachary A., Dhanak, Manhar R., Florida Atlantic University
- Abstract/Description
-
A microbubble generation system has been designed, constructed, and tested in a circulating water tunnel. A 1.0 m long flat plate was subjected to a flow where the Reynolds number ranged from ReL = 7.23x 10^5 - 1.04 x 10^6. Bubble diameters and skin friction measurements were studied at various airflow rates and water velocities. Bubbles were produced by forcing air through porous plates that were mounted flush with the bottom of the test plate. Once emitted through the plates, the bubbles...
Show moreA microbubble generation system has been designed, constructed, and tested in a circulating water tunnel. A 1.0 m long flat plate was subjected to a flow where the Reynolds number ranged from ReL = 7.23x 10^5 - 1.04 x 10^6. Bubble diameters and skin friction measurements were studied at various airflow rates and water velocities. Bubbles were produced by forcing air through porous plates that were mounted flush with the bottom of the test plate. Once emitted through the plates, the bubbles traveled downstream in the boundary layer. The airflow rate and water velocity were found to have the most significant impact on the size of the bubbles created. Skin friction drag measurements were recorded in detail in the velocity and airflow rate ranges. The coefficient of skin friction was determined and relationships were then established between this coefficient and the void ratio.
Show less - Date Issued
- 2007
- PURL
- http://purl.flvc.org/fau/fd/FA00012523
- Subject Headings
- Frictional resistance (Hydrodynamics), Drag (Aerodynamics), Skin friction (Aerodynamics), Fluid mechanics
- Format
- Document (PDF)
- Title
- Bio-Inspired Modified Turbulent Boundary Layers.
- Creator
- French, Stone A., Glegg, Stewart, Florida Atlantic University, Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science
- Abstract/Description
-
The reduction of drag and sound pressure levels (SPL) are desirable traits in many fluidics’ applications ranging from high-speed transportation to energy generation. Inspiration has been found in some species of owls that possess boundary layer control surface treatments on their wings that appear to reduce SPL while in flight. This modification of the flow over the wings is known as the development of a modified boundary layer (MBL). Virginia Tech is working in collaboration with Florida...
Show moreThe reduction of drag and sound pressure levels (SPL) are desirable traits in many fluidics’ applications ranging from high-speed transportation to energy generation. Inspiration has been found in some species of owls that possess boundary layer control surface treatments on their wings that appear to reduce SPL while in flight. This modification of the flow over the wings is known as the development of a modified boundary layer (MBL). Virginia Tech is working in collaboration with Florida Atlantic University to investigate this reduction in SPL experimentally but requires the assistance of RANS simulation to obtain drag results. This thesis investigates the drag effects of the rod style geometries being evaluated at VT to mimic the MBL of an owl. In doing this it was found that the height of the rods has a direct correlation with the amount of drag induced by the presence of the rods in the flow field.
Show less - Date Issued
- 2021
- PURL
- http://purl.flvc.org/fau/fd/FA00013826
- Subject Headings
- Turbulent boundary layer, Sound pressure, Biomimicry, Drag (Aerodynamics)
- Format
- Document (PDF)
- Title
- Adaptive controller design for an autonomous twin-hulled surface vessel with uncertain displacement and drag.
- Creator
- Klinger, Wilhelm B., von Ellenrieder, Karl, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The design and validation of a low-level backstepping controller for speed and heading that is adaptive in speed for a twin-hulled underactuated unmanned surface vessel is presented. Consideration is given to the autonomous launch and recovery of an underwater vehicle in the decision to pursue an adaptive control approach. Basic system identification is conducted and numerical simulation of the vessel is developed and validated. A speed and heading controller derived using the backstepping...
Show moreThe design and validation of a low-level backstepping controller for speed and heading that is adaptive in speed for a twin-hulled underactuated unmanned surface vessel is presented. Consideration is given to the autonomous launch and recovery of an underwater vehicle in the decision to pursue an adaptive control approach. Basic system identification is conducted and numerical simulation of the vessel is developed and validated. A speed and heading controller derived using the backstepping method and a model reference adaptive controller are developed and ultimately compared through experimental testing against a previously developed control law. Experimental tests show that the adaptive speed control law outperforms the non-adaptive alternatives by as much as 98% in some cases; however heading control is slightly sacrificed when using the adaptive speed approach. It is found that the adaptive control law is the best alternative when drag and mass properties of the vessel are time-varying and uncertain.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004130, http://purl.flvc.org/fau/fd/FA00004130
- Subject Headings
- Adaptive control systems, Drag (Aerodynamics), Intelligent control systems, Intelligent control systems, Vehicles, Remotely piloted
- Format
- Document (PDF)