Current Search: Diffusers -- Fluid dynamics (x)
View All Items
- Title
- Emission characteristics of a liquid spray sudden expansion combustor using computational fluid dynamics.
- Creator
- Rodriguez, Daniel, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
A sudden expansion combustor (SUE) is analyzed using computation fluid dynamics (CFD). CO emissions and NOx emissions are computed for various operating conditions of the SUE combustor using a can type and an annular type geometrical configurations. The goal of this thesis is to see if the SUE combustor is a viable alternative to conventional combustors which utilize swirlers. It is found that for the can type combustor the NOx emissions were quite low compared to other combustor types but...
Show moreA sudden expansion combustor (SUE) is analyzed using computation fluid dynamics (CFD). CO emissions and NOx emissions are computed for various operating conditions of the SUE combustor using a can type and an annular type geometrical configurations. The goal of this thesis is to see if the SUE combustor is a viable alternative to conventional combustors which utilize swirlers. It is found that for the can type combustor the NOx emissions were quite low compared to other combustor types but the CO emissions were fairly high. The annular combustor shows better CO emissions compared to the can type, but the CO emissions are still high compared to other combustors. Emissions can be improved by providing better mixing in the primary combustion zone. The SUE combustor design needs to be further refined in order for it to be a viable alternative to conventional combustors with swirlers.
Show less - Date Issued
- 2013
- PURL
- http://purl.flvc.org/fcla/dt/3362574
- Subject Headings
- Fluid dynamics, Data processing, Fluid dynamics, Mathematical models, Computational fluid dynamics, Diffusers, Fluid dynamics
- Format
- Document (PDF)
- Title
- Concrete diffusivity and its correlation with chloride deposition rate on concrete exposed to marine environments.
- Creator
- Echevarria, Victor Anthony., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The aim of this study was to investigate the diffusion of chloride ions into concrete samples that were exposed in scenarios that simulate the splash, tidal, atmospheric, and immersed portions of a marine structure. To study the atmospheric deposition, the project also investigated the relationship between chloride ion deposition on the wet candle and its accumulation into concrete samples. Results from the wet candle experiment indicated that between 2% and 45% of the chlorides deposited per...
Show moreThe aim of this study was to investigate the diffusion of chloride ions into concrete samples that were exposed in scenarios that simulate the splash, tidal, atmospheric, and immersed portions of a marine structure. To study the atmospheric deposition, the project also investigated the relationship between chloride ion deposition on the wet candle and its accumulation into concrete samples. Results from the wet candle experiment indicated that between 2% and 45% of the chlorides deposited per square meter of exposed area could be found within the concrete samples. After 6 months, slag G1a blocks showed the most resistance to chloride penetration in the tidal and splash simulations. After 10 months of exposure, fly ash samples had the slowest rates of diffusion in the tidal simulation while the fly ash + silica fume samples and the slag samples measured similar rates of diffusion within the tidal zone. After 90 days of curing, cylinders composed of 20% fly ash & 8% silica fume measured the highest average resistivity values and were found to be less vulnerable to chloride ion penetration than the 20% fly ash and the 50% slag concrete through rapid migration tests.
Show less - Date Issued
- 2012
- PURL
- http://purl.flvc.org/FAU/3358557
- Subject Headings
- Reinforced concrete, Construction, Corrosion, Composite reinforced concrete, Corrosion, Testing, Concrete, Fluid dynamics, Concrete, Chemical resistance, Chlorides, Diffusion rate
- Format
- Document (PDF)