Current Search: Deep learning (x)
View All Items
Pages
- Title
- DEEP LEARNING FOR CRIME PREDICTION.
- Creator
- Gacharich, Nicholas, Zhu, Xingquan, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
In this research, we propose to use deep learning to predict crimes in small neighborhoods (regions) of a city, by using historical crime data collected from the past. The motivation of crime predictions is that if we can predict the number crimes that will occur in a certain week then the city officials and law enforcement can prepare resources and manpower more effectively. Due to inherent connections between geographic regions and crime activities, the crime numbers in different regions ...
Show moreIn this research, we propose to use deep learning to predict crimes in small neighborhoods (regions) of a city, by using historical crime data collected from the past. The motivation of crime predictions is that if we can predict the number crimes that will occur in a certain week then the city officials and law enforcement can prepare resources and manpower more effectively. Due to inherent connections between geographic regions and crime activities, the crime numbers in different regions (with respect to different time periods) are often correlated. Such correlation brings challenges and opportunities to employ deep learning to learn features from historical data for accurate prediction of the future crime numbers for each neighborhood. To leverage crime correlations between different regions, we convert crime data into a heat map, to show the intensity of crime numbers and the geographical distributions. After that, we design a deep learning framework to learn from such heat map for prediction. In our study, we look at the crime reported in twenty different neighbourhoods in Vancouver, Canada over a twenty week period and predict the total crime count that will occur in the future. We will look at the number of crimes per week that have occurred in the span of ten weeks and predict the crime count for the following weeks. The location of where the crimes occur is extracted from a database and plotted onto a heat map. The model we are using to predict the crime count consists of a CNN (Convolutional Neural Network) and a LSTM (Long-Short Term Memory) network attached to the CNN. The purpose of the CNN is to train the model spatially and understand where crimes occur in the images. The LSTM is used to train the model temporally and help us understand which week the crimes occur in time. By feeding the model heat map images of crime hot spots into the CNN and LSTM network, we will be able to predict the crime count and the most likely locations of the crimes for future weeks.
Show less - Date Issued
- 2021
- PURL
- http://purl.flvc.org/fau/fd/FA00013723
- Subject Headings
- Deep learning, Crime forecasting
- Format
- Document (PDF)
- Title
- CONNECTING THE NOSE AND THE BRAIN: DEEP LEARNING FOR CHEMICAL GAS SENSING.
- Creator
- Stark, Emily Nicole, Barenholtz, Elan, Florida Atlantic University, Department of Psychology, Charles E. Schmidt College of Science
- Abstract/Description
-
The success of deep learning in applications including computer vision, natural language processing, and even the game of Go can only be a orded by powerful computational resources and vast data sets. Data sets coming from the medical application are often much smaller and harder to acquire. Here a novel data approach is explained and used to demonstrate how to use deep learning as a step in data discovery, classi cation, and ultimately support for further investigation. Data sets used to...
Show moreThe success of deep learning in applications including computer vision, natural language processing, and even the game of Go can only be a orded by powerful computational resources and vast data sets. Data sets coming from the medical application are often much smaller and harder to acquire. Here a novel data approach is explained and used to demonstrate how to use deep learning as a step in data discovery, classi cation, and ultimately support for further investigation. Data sets used to illustrate these successes come from common ion-separation techniques that allow for gas samples to be quantitatively analyzed. The success of this data approach allows for the deployment of deep learning to smaller data sets.
Show less - Date Issued
- 2019
- PURL
- http://purl.flvc.org/fau/fd/FA00013416
- Subject Headings
- Deep Learning, Data sets, Gases--Analysis
- Format
- Document (PDF)
- Title
- A Deep Learning Approach To Target Recognition In Side-Scan Sonar Imagery.
- Creator
- Einsidler, Dylan, Dhanak, Manhar R., Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Automatic target recognition capabilities in autonomous underwater vehicles has been a daunting task, largely due to the noisy nature of sonar imagery and due to the lack of publicly available sonar data. Machine learning techniques have made great strides in tackling this feat, although not much research has been done regarding deep learning techniques for side-scan sonar imagery. Here, a state-of-the-art deep learning object detection method is adapted for side-scan sonar imagery, with...
Show moreAutomatic target recognition capabilities in autonomous underwater vehicles has been a daunting task, largely due to the noisy nature of sonar imagery and due to the lack of publicly available sonar data. Machine learning techniques have made great strides in tackling this feat, although not much research has been done regarding deep learning techniques for side-scan sonar imagery. Here, a state-of-the-art deep learning object detection method is adapted for side-scan sonar imagery, with results supporting a simple yet robust method to detect objects/anomalies along the seabed. A systematic procedure was employed in transfer learning a pre-trained convolutional neural network in order to learn the pixel-intensity based features of seafloor anomalies in sonar images. Using this process, newly trained convolutional neural network models were produced using relatively small training datasets and tested to show reasonably accurate anomaly detection and classification with little to no false alarms.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00013025
- Subject Headings
- Deep learning, Sidescan sonar, Underwater vision
- Format
- Document (PDF)
- Title
- Parallel Distributed Deep Learning on Cluster Computers.
- Creator
- Kennedy, Robert Kwan Lee, Khoshgoftaar, Taghi M., Florida Atlantic University, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Deep Learning is an increasingly important subdomain of arti cial intelligence. Deep Learning architectures, arti cial neural networks characterized by having both a large breadth of neurons and a large depth of layers, bene ts from training on Big Data. The size and complexity of the model combined with the size of the training data makes the training procedure very computationally and temporally expensive. Accelerating the training procedure of Deep Learning using cluster computers faces...
Show moreDeep Learning is an increasingly important subdomain of arti cial intelligence. Deep Learning architectures, arti cial neural networks characterized by having both a large breadth of neurons and a large depth of layers, bene ts from training on Big Data. The size and complexity of the model combined with the size of the training data makes the training procedure very computationally and temporally expensive. Accelerating the training procedure of Deep Learning using cluster computers faces many challenges ranging from distributed optimizers to the large communication overhead speci c to a system with o the shelf networking components. In this thesis, we present a novel synchronous data parallel distributed Deep Learning implementation on HPCC Systems, a cluster computer system. We discuss research that has been conducted on the distribution and parallelization of Deep Learning, as well as the concerns relating to cluster environments. Additionally, we provide case studies that evaluate and validate our implementation.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00013080
- Subject Headings
- Deep learning., Neural networks (Computer science)., Artificial intelligence., Machine learning.
- Format
- Document (PDF)
- Title
- OPTIMIZED DEEP LEARNING ARCHITECTURES AND TECHNIQUES FOR EDGE AI.
- Creator
- Zaniolo, Luiz, Marques, Oge, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
The recent rise of artificial intelligence (AI) using deep learning networks allowed the development of automatic solutions for many tasks that, in the past, were seen as impossible to be performed by a machine. However, deep learning models are getting larger, need significant processing power to train, and powerful machines to use it. As deep learning applications become ubiquitous, another trend is taking place: the growing use of edge devices. This dissertation addresses selected...
Show moreThe recent rise of artificial intelligence (AI) using deep learning networks allowed the development of automatic solutions for many tasks that, in the past, were seen as impossible to be performed by a machine. However, deep learning models are getting larger, need significant processing power to train, and powerful machines to use it. As deep learning applications become ubiquitous, another trend is taking place: the growing use of edge devices. This dissertation addresses selected technical issues associated with edge AI, proposes novel solutions to them, and demonstrates the effectiveness of the proposed approaches. The technical contributions of this dissertation include: (i) architectural optimizations to deep neural networks, particularly the use of patterned stride in convolutional neural networks used for image classification; (ii) use of weight quantization to reduce model size without hurting its accuracy; (iii) systematic evaluation of the impact of image imperfections on skin lesion classifiers' performance in the context of teledermatology; and (iv) a new approach for code prediction using natural language processing techniques, targeted at edge devices.
Show less - Date Issued
- 2021
- PURL
- http://purl.flvc.org/fau/fd/FA00013822
- Subject Headings
- Artificial intelligence, Deep learning (Machine learning), Neural networks (Computer science)
- Format
- Document (PDF)
- Title
- IMAGE QUALITY AND BEAUTY CLASSIFICATION USING DEEP LEARNING.
- Creator
- Golchubian, Arash, Nojoumian, Mehrdad, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
The field of computer vision has grown by leaps and bounds in the past decade. The rapid advances can be largely attributed to advances made in the field of Artificial Neural Networks and more specifically can be attributed to the rapid advancement of Convolutional Neural Networks (CNN) and Deep Learning. One area that is of great interest to the research community at large is the ability to detect the quality of images in the sense of technical parameters such as blurriness, encoding...
Show moreThe field of computer vision has grown by leaps and bounds in the past decade. The rapid advances can be largely attributed to advances made in the field of Artificial Neural Networks and more specifically can be attributed to the rapid advancement of Convolutional Neural Networks (CNN) and Deep Learning. One area that is of great interest to the research community at large is the ability to detect the quality of images in the sense of technical parameters such as blurriness, encoding artifacts, saturation, and lighting, as well as for its’ aesthetic appeal. The purpose of such a mechanism could be detecting and discarding noisy, blurry, dark, or over exposed images, as well as detecting images that would be considered beautiful by a majority of viewers. In this dissertation, the detection of various quality and aesthetic aspects of an image using CNNs is explored. This research produced two datasets that are manually labeled for quality issues such as blur, poor lighting, and digital noise, and for their aesthetic qualities, and Convolutional Neural Networks were designed and trained using these datasets. Lastly, two case studies were performed to show the real-world impact of this research to traffic sign detection and medical image diagnosis.
Show less - Date Issued
- 2022
- PURL
- http://purl.flvc.org/fau/fd/FA00014029
- Subject Headings
- Deep learning (Machine learning), Computer vision, Aesthetics, Image Quality
- Format
- Document (PDF)
- Title
- NETWORK INTRUSION DETECTION AND DEEP LEARNING MECHANISMS.
- Creator
- Chatterjee, Suvosree, Cardei, Ionut, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
Cyber attack is a strong threat to the digital world. So, it’s very essential to keep the network safe. Network Intrusion Detection system is the system to address this problem. Network Intrusion Detection system functions like a firewall, and monitors incoming and outgoing traffic like ingress and egress filtering fire wall. Network Intrusion Detection System does anomaly and hybrid detection for detecting known and unknown attacks. My thesis discusses about the several network cyber attacks...
Show moreCyber attack is a strong threat to the digital world. So, it’s very essential to keep the network safe. Network Intrusion Detection system is the system to address this problem. Network Intrusion Detection system functions like a firewall, and monitors incoming and outgoing traffic like ingress and egress filtering fire wall. Network Intrusion Detection System does anomaly and hybrid detection for detecting known and unknown attacks. My thesis discusses about the several network cyber attacks we face nowadays and I created several Deep learning models to detect accurately, I used NSL-KDD dataset which is a popular dataset, that contains several network attacks. After experimenting with different deep learning models I found some disparities in the training accuracy and validation accuracy, which is a clear indication of overfitting. To reduce the overfitting I introduced regularization and dropout in the models and experimented with different hyperparameters.
Show less - Date Issued
- 2023
- PURL
- http://purl.flvc.org/fau/fd/FA00014128
- Subject Headings
- Deep learning (Machine learning), Cyberterrorism, Intrusion detection systems (Computer security)
- Format
- Document (PDF)
- Title
- A UNIFIED SOFT SENSING FRAMEWORK FOR COMPLEX DYNAMICAL SYSTEMS.
- Creator
- Huang, Yu, Tang, Yufei, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
In the past few years, the development of complex dynamical networks or systems has stimulated great interest in the study of the principles and mechanisms underlying the Internet of things (IoT). IoT is envisioned as an intelligent network infrastructure with a vast number of ubiquitous smart devices present in diverse application domains and have already improved many aspects of daily life. Many overtly futuristic IoT applications acquire data gathered via distributed sensors that can be...
Show moreIn the past few years, the development of complex dynamical networks or systems has stimulated great interest in the study of the principles and mechanisms underlying the Internet of things (IoT). IoT is envisioned as an intelligent network infrastructure with a vast number of ubiquitous smart devices present in diverse application domains and have already improved many aspects of daily life. Many overtly futuristic IoT applications acquire data gathered via distributed sensors that can be uniquely identified, localized, and communicated with, i.e., the support of sensor networks. Soft-sensing models are in demand to support IoT applications to achieve the maximal exploitation of transforming the information of measurements into more useful knowledge, which plays essential roles in condition monitoring, quality prediction, smooth control, and many other essential aspects of complex dynamical systems. This in turn calls for innovative soft-sensing models that account for scalability, heterogeneity, adaptivity, and robustness to unpredictable uncertainties. The advent of big data, the advantages of ever-evolving deep learning (DL) techniques (where models use multiple layers to extract multi-levels of feature representations progressively), as well as ever-increasing processing power in hardware, has triggered a proliferation of research that applies DL to soft-sensing models. However, many critical questions need to be further investigated in the deep learning-based soft-sensing.
Show less - Date Issued
- 2022
- PURL
- http://purl.flvc.org/fau/fd/FA00013993
- Subject Headings
- Dynamical systems, Dynamics, Sensor networks, Deep learning (Machine learning)
- Format
- Document (PDF)
- Title
- AN ARTIFICIAL INTELLIGENCE DRIVEN FRAMEWORK FOR MEDICAL IMAGING.
- Creator
- Sanghvi, Harshal A., Agarwal, Ankur, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
The major objective of this dissertation was to create a framework which is used for medical image diagnosis. In this diagnosis, we brought classification and diagnosing of diseases through an Artificial Intelligence based framework, including COVID, Pneumonia, and Melanoma cancer through medical images. The algorithm ran on multiple datasets. A model was developed which detected the medical images through changing hyper-parameters. The aim of this work was to apply the new transfer learning...
Show moreThe major objective of this dissertation was to create a framework which is used for medical image diagnosis. In this diagnosis, we brought classification and diagnosing of diseases through an Artificial Intelligence based framework, including COVID, Pneumonia, and Melanoma cancer through medical images. The algorithm ran on multiple datasets. A model was developed which detected the medical images through changing hyper-parameters. The aim of this work was to apply the new transfer learning framework DenseNet-201 for the diagnosis of the diseases and compare the results with the other deep learning models. The novelty in the proposed work was modifying the Dense Net 201 Algorithm, changing hyper parameters (source weights, Batch Size, Epochs, Architecture (number of neurons in hidden layer), learning rate and optimizer) to quantify the results. The novelty also included the training of the model by quantifying weights and in order to get more accuracy. During the data selection process, the data were cleaned, removing all the outliers. Data augmentation was used for the novel architecture to overcome overfitting and hence not producing false absurd results the computational performance was also observed. The proposed model results were also compared with the existing deep learning models and the algorithm was also tested on multiple datasets.
Show less - Date Issued
- 2023
- PURL
- http://purl.flvc.org/fau/fd/FA00014274
- Subject Headings
- Diagnostic imaging, Artificial intelligence, Deep learning (Machine learning)
- Format
- Document (PDF)
- Title
- FEATURE REPRESENTATION LEARNING FOR ONLINE ADVERTISING AND RECOMMENDATIONS.
- Creator
- Gharibshah, Zhabiz, Zhu, Xingquan, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
Online advertising [100], as a multi-billion dollar business, provides a common marketing experience when people access online services using electronic devices, such as desktop computers, tablets, smartphones, and so on. Using the Internet as a means of advertising, different stakeholders take actions in the background to provide and deliver advertisements to users through numerous platforms, such as search engines, news sites, and social networks, where dedicated spots of areas are used to...
Show moreOnline advertising [100], as a multi-billion dollar business, provides a common marketing experience when people access online services using electronic devices, such as desktop computers, tablets, smartphones, and so on. Using the Internet as a means of advertising, different stakeholders take actions in the background to provide and deliver advertisements to users through numerous platforms, such as search engines, news sites, and social networks, where dedicated spots of areas are used to display advertisements (ads) along with search results, posts, or page content. Online advertising is mainly based on dynamically selecting ads through a real-time bidding (or auction) mechanism. Predicting user responses like clicking ads in e-commerce platforms and internet-based advertising systems, as the first measurable user response, is an essential step for many digital advertising and recommendation systems to capture the user’s propensity to follow up actions, such as purchasing a product or subscribing to a service. To maximize revenue and user satisfaction, online advertising platforms must predict the expected user behavior of each displayed advertisement and maximize the user’s expectations of clicking [28]. Based on this observed feedback, these systems are tailored to user preferences to decide the order in that ads or any promoted content should be served to them. This objective provides an incentive to develop new research by using ideas derived from different domains like machine learning and data mining combined with models for information retrieval and mathematical optimization. They introduce different machine learning and data mining methods that employ deep learning-based predictive models to learn the representation of input features with the aim of user response prediction. Feature representation learning is known as a fundamental task on how to input information is going to be represented in machine learning models. A good feature representation learning method that seeks to learn low-dimensional embedding vectors is a key factor for the success of many downstream analytics tasks, such as click-through prediction and conversion prediction in recommendation systems and online advertising platforms.
Show less - Date Issued
- 2023
- PURL
- http://purl.flvc.org/fau/fd/FA00014269
- Subject Headings
- Internet advertising, Deep learning (Machine learning), Internet marketing
- Format
- Document (PDF)
- Title
- DATA AUGMENTATION IN DEEP LEARNING.
- Creator
- Shorten, Connor, Khoshgoftaar, Taghi M., Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
Recent successes of Deep Learning-powered AI are largely due to the trio of: algorithms, GPU computing, and big data. Data could take the shape of hospital records, satellite images, or the text in this paragraph. Deep Learning algorithms typically need massive collections of data before they can make reliable predictions. This limitation inspired investigation into a class of techniques referred to as Data Augmentation. Data Augmentation was originally developed as a set of label-preserving...
Show moreRecent successes of Deep Learning-powered AI are largely due to the trio of: algorithms, GPU computing, and big data. Data could take the shape of hospital records, satellite images, or the text in this paragraph. Deep Learning algorithms typically need massive collections of data before they can make reliable predictions. This limitation inspired investigation into a class of techniques referred to as Data Augmentation. Data Augmentation was originally developed as a set of label-preserving transformations used in order to simulate large datasets from small ones. For example, imagine developing a classifier that categorizes images as either a “cat” or a “dog”. After initial collection and labeling, there may only be 500 of these images, which are not enough data points to train a Deep Learning model. By transforming these images with Data Augmentations such as rotations and brightness modifications, more labeled images are available for model training and classification! In addition to applications for learning from limited labeled data, Data Augmentation can also be used for generalization testing. For example, we can augment the test set to set the visual style of images to “winter” and see how that impacts the performance of a stop sign detector. The dissertation begins with an overview of Deep Learning methods such as neural network architectures, gradient descent optimization, and generalization testing. Following an initial description of this technology, the dissertation explains overfitting. Overfitting is the crux of Deep Learning methods in which improvements to the training set do not lead to improvements on the testing set. To the rescue are Data Augmentation techniques, of which the Dissertation presents an overview of the augmentations used for both image and text data, as well as the promising potential of generative data augmentation with models such as ChatGPT. The dissertation then describes three major experimental works revolving around CIFAR-10 image classification, language modeling a novel dataset of Keras information, and patient survival classification from COVID-19 Electronic Health Records. The dissertation concludes with a reflection on the evolution of limitations of Deep Learning and directions for future work.
Show less - Date Issued
- 2023
- PURL
- http://purl.flvc.org/fau/fd/FA00014228
- Subject Headings
- Deep learning (Machine learning), Artificial intelligence, Data augmentation
- Format
- Document (PDF)
- Title
- Computer-aided diagnosis of skin cancers using dermatology images.
- Creator
- Gilani, Syed Qasim, Marques, Oge, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
Skin cancer is a prevalent cancer that significantly contributes to global mortality rates. Early detection is crucial for a high survival rate. Dermatologists primarily rely on visual inspection to diagnose skin cancers, but this method is inaccurate. Deep learning algorithms can enhance the diagnostic accuracy of skin cancers. However, these algorithms require substantial labeled data for effective training. Acquiring annotated data for skin cancer classification is time-consuming,...
Show moreSkin cancer is a prevalent cancer that significantly contributes to global mortality rates. Early detection is crucial for a high survival rate. Dermatologists primarily rely on visual inspection to diagnose skin cancers, but this method is inaccurate. Deep learning algorithms can enhance the diagnostic accuracy of skin cancers. However, these algorithms require substantial labeled data for effective training. Acquiring annotated data for skin cancer classification is time-consuming, expensive, and necessitates expert annotation. Moreover, skin cancer datasets often suffer from imbalanced data distribution. Generative Adversarial Networks (GANs) can be used to overcome the challenges of data scarcity and lack of labels by automatically generating skin cancer images. However, training and testing data from different distributions can introduce domain shift and bias, impacting the model’s performance. This dissertation addresses this issue by developing deep learning-based domain adaptation models. Additionally, this research emphasizes deploying deep learning models on hardware to enable real-time skin cancer detection, facilitating accurate diagnoses by dermatologists. Deploying conventional deep learning algorithms on hardware is not preferred due to the problem of high resource consumption. Therefore, this dissertation presents spiking neural network-based (SNN) models designed specifically for hardware implementation. SNNs are preferred for their power-efficient behavior and suitability for hardware deployment.
Show less - Date Issued
- 2023
- PURL
- http://purl.flvc.org/fau/fd/FA00014233
- Subject Headings
- Deep learning (Machine learning), Diagnostic imaging, Skin--Cancer--Diagnosis
- Format
- Document (PDF)
- Title
- OCR2SEQ: A NOVEL MULTI-MODAL DATA AUGMENTATION PIPELINE FOR WEAK SUPERVISION.
- Creator
- Lowe, Michael A., Khoshgoftaar, Taghi M., Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
With the recent large-scale adoption of Large Language Models in multidisciplinary research and commercial space, the need for large amounts of labeled data has become more crucial than ever to evaluate potential use cases for opportunities in applied intelligence. Most domain specific fields require a substantial shift that involves extremely large amounts of heterogeneous data to have meaningful impact on the pre-computed weights of most large language models. We explore extending the...
Show moreWith the recent large-scale adoption of Large Language Models in multidisciplinary research and commercial space, the need for large amounts of labeled data has become more crucial than ever to evaluate potential use cases for opportunities in applied intelligence. Most domain specific fields require a substantial shift that involves extremely large amounts of heterogeneous data to have meaningful impact on the pre-computed weights of most large language models. We explore extending the capabilities a state-of-the-art unsupervised pre-training method; Transformers and Sequential Denoising Auto-Encoder (TSDAE). In this study we show various opportunities for using OCR2Seq a multi-modal generative augmentation strategy to further enhance and measure the quality of noise samples used when using TSDAE as a pretraining task. This study is a first of its kind work that leverages converting both generalized and sparse domains of relational data into multi-modal sources. Our primary objective is measuring the quality of augmentation in relation to the current implementation of the sentence transformers library. Further work includes the effect on ranking, language understanding, and corrective quality.
Show less - Date Issued
- 2023
- PURL
- http://purl.flvc.org/fau/fd/FA00014367
- Subject Headings
- Natural language processing (Computer science), Deep learning (Machine learning)
- Format
- Document (PDF)
- Title
- ADVANCING ONE-CLASS CLASSIFICATION: A COMPREHENSIVE ANALYSIS FROM THEORY TO NOVEL APPLICATIONS.
- Creator
- Abdollah, Zadeh Azadeh, Khoshgoftaar, Taghi M., Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
This dissertation explores one-class classification (OCC) in the context of big data and fraud detection, addressing challenges posed by imbalanced datasets. A detailed survey of OCC-related literature forms a core part of the study, categorizing works into outlier detection, novelty detection, and deep learning applications. This survey reveals a gap in the application of OCC to the inherent problems of big data, such as class rarity and noisy data. Building upon the foundational insights...
Show moreThis dissertation explores one-class classification (OCC) in the context of big data and fraud detection, addressing challenges posed by imbalanced datasets. A detailed survey of OCC-related literature forms a core part of the study, categorizing works into outlier detection, novelty detection, and deep learning applications. This survey reveals a gap in the application of OCC to the inherent problems of big data, such as class rarity and noisy data. Building upon the foundational insights gained from the comprehensive literature review on OCC, the dissertation progresses to a detailed comparative analysis between OCC and binary classification methods. This comparison is pivotal in understanding their respective strengths and limitations across various applications, emphasizing their roles in addressing imbalanced datasets. The research then specifically evaluates binary and OCC using credit card fraud data. This practical application highlights the nuances and effectiveness of these classification methods in real-world scenarios, offering insights into their performance in detecting fraudulent activities. After the evaluation of binary and OCC using credit card fraud data, the dissertation extends this inquiry with a detailed investigation into the effectiveness of both methodologies in fraud detection. This extended analysis involves utilizing not only the Credit Card Fraud Detection Dataset but also the Medicare Part D dataset. The findings show the comparative performance and suitability of these classification methods in practical fraud detection scenarios. Finally, the dissertation examines the impact of training OCC algorithms on majority versus minority classes, using the two previously mentioned datasets in addition to Medicare Part B and Durable Medical Equipment, Prosthetics, Orthotics and Supplies (DMEPOS) datasets. This exploration offers critical insights into model training strategies and their implications, suggesting that training on the majority class can often lead to more robust classification results. In summary, this dissertation provides a deep understanding of OCC, effectively bridging theoretical concepts with novel applications in big data and fraud detection. It contributes to the field by offering a comprehensive analysis of OCC methodologies, their practical implications, and their effectiveness in addressing class imbalance in big data.
Show less - Date Issued
- 2024
- PURL
- http://purl.flvc.org/fau/fd/FA00014387
- Subject Headings
- Classification, Big data, Deep learning (Machine learning), Computer engineering
- Format
- Document (PDF)
- Title
- PRESERVING KNOWLEDGE IN SIMULATED BEHAVIORAL ACTION LOOPS.
- Creator
- St.Clair, Rachel, Barenholtz, Elan, Hahn, William, Florida Atlantic University, Center for Complex Systems and Brain Sciences, Charles E. Schmidt College of Science
- Abstract/Description
-
One basic goal of artificial learning systems is the ability to continually learn throughout that system’s lifetime. Transitioning between tasks and re-deploying prior knowledge is thus a desired feature of artificial learning. However, in the deep-learning approaches, the problem of catastrophic forgetting of prior knowledge persists. As a field, we want to solve the catastrophic forgetting problem without requiring exponential computations or time, while demonstrating real-world relevance....
Show moreOne basic goal of artificial learning systems is the ability to continually learn throughout that system’s lifetime. Transitioning between tasks and re-deploying prior knowledge is thus a desired feature of artificial learning. However, in the deep-learning approaches, the problem of catastrophic forgetting of prior knowledge persists. As a field, we want to solve the catastrophic forgetting problem without requiring exponential computations or time, while demonstrating real-world relevance. This work proposes a novel model which uses an evolutionary algorithm similar to a meta-learning objective, that is fitted with a resource constraint metrics. Four reinforcement learning environments are considered with the shared concept of depth although the collection of environments is multi-modal. This system shows preservation of some knowledge in sequential task learning and protection of catastrophic forgetting in deep neural networks.
Show less - Date Issued
- 2022
- PURL
- http://purl.flvc.org/fau/fd/FA00013896
- Subject Headings
- Artificial intelligence, Deep learning (Machine learning), Reinforcement learning, Neural networks (Computer science)
- Format
- Document (PDF)
- Title
- An Evaluation of Deep Learning with Class Imbalanced Big Data.
- Creator
- Johnson, Justin Matthew, Khoshgoftaar, Taghi M., Florida Atlantic University, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Effective classification with imbalanced data is an important area of research, as high class imbalance is naturally inherent in many real-world applications, e.g. anomaly detection. Modeling such skewed data distributions is often very difficult, and non-standard methods are sometimes required to combat these negative effects. These challenges have been studied thoroughly using traditional machine learning algorithms, but very little empirical work exists in the area of deep learning with...
Show moreEffective classification with imbalanced data is an important area of research, as high class imbalance is naturally inherent in many real-world applications, e.g. anomaly detection. Modeling such skewed data distributions is often very difficult, and non-standard methods are sometimes required to combat these negative effects. These challenges have been studied thoroughly using traditional machine learning algorithms, but very little empirical work exists in the area of deep learning with class imbalanced big data. Following an in-depth survey of deep learning methods for addressing class imbalance, we evaluate various methods for addressing imbalance on the task of detecting Medicare fraud, a big data problem characterized by extreme class imbalance. Case studies herein demonstrate the impact of class imbalance on neural networks, evaluate the efficacy of data-level and algorithm-level methods, and achieve state-of-the-art results on the given Medicare data set. Results indicate that combining under-sampling and over-sampling maximizes both performance and efficiency.
Show less - Date Issued
- 2019
- PURL
- http://purl.flvc.org/fau/fd/FA00013221
- Subject Headings
- Deep learning, Big data, Medicare fraud--Prevention
- Format
- Document (PDF)
- Title
- COMPARISON OF PRE-TRAINED CONVOLUTIONAL NEURAL NETWORK PERFORMANCE ON GLIOMA CLASSIFICATION.
- Creator
- Andrews, Whitney Angelica Johanna, Furht, Borko, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
Gliomas are an aggressive class of brain tumors that are associated with a better prognosis at a lower grade level. Effective differentiation and classification are imperative for early treatment. MRI scans are a popular medical imaging modality to detect and diagnosis brain tumors due to its capability to non-invasively highlight the tumor region. With the rise of deep learning, researchers have used convolution neural networks for classification purposes in this domain, specifically pre...
Show moreGliomas are an aggressive class of brain tumors that are associated with a better prognosis at a lower grade level. Effective differentiation and classification are imperative for early treatment. MRI scans are a popular medical imaging modality to detect and diagnosis brain tumors due to its capability to non-invasively highlight the tumor region. With the rise of deep learning, researchers have used convolution neural networks for classification purposes in this domain, specifically pre-trained networks to reduce computational costs. However, with various MRI modalities, MRI machines, and poor image scan quality cause different network structures to have different performance metrics. Each pre-trained network is designed with a different structure that allows robust results given specific problem conditions. This thesis aims to cover the gap in the literature to compare the performance of popular pre-trained networks on a controlled dataset that is different than the network trained domain.
Show less - Date Issued
- 2020
- PURL
- http://purl.flvc.org/fau/fd/FA00013450
- Subject Headings
- Gliomas, Neural networks (Computer science), Deep Learning, Convolutional neural networks
- Format
- Document (PDF)
- Title
- DEVELOPING A DEEP LEARNING PIPELINE TO AUTOMATICALLY ANNOTATE GOLD PARTICLES IN IMMUNOELECTRON MICROSCOPY IMAGES.
- Creator
- Jerez, Diego Alejandro, Hahn, William, Florida Atlantic University, Department of Mathematical Sciences, Charles E. Schmidt College of Science
- Abstract/Description
-
Machine learning has been utilized in bio-imaging in recent years, however as it is relatively new and evolving, some researchers who wish to utilize machine learning tools have limited access because of a lack of programming knowledge. In electron microscopy (EM), immunogold labeling is commonly used to identify the target proteins, however the manual annotation of the gold particles in the images is a time-consuming and laborious process. Conventional image processing tools could provide...
Show moreMachine learning has been utilized in bio-imaging in recent years, however as it is relatively new and evolving, some researchers who wish to utilize machine learning tools have limited access because of a lack of programming knowledge. In electron microscopy (EM), immunogold labeling is commonly used to identify the target proteins, however the manual annotation of the gold particles in the images is a time-consuming and laborious process. Conventional image processing tools could provide semi-automated annotation, but those require that users make manual adjustments for every step of the analysis. To create a new high-throughput image analysis tool for immuno-EM, I developed a deep learning pipeline that was designed to deliver a completely automated annotation of immunogold particles in EM images. The program was made accessible for users without prior programming experience and was also expanded to be used on different types of immuno-EM images.
Show less - Date Issued
- 2020
- PURL
- http://purl.flvc.org/fau/fd/FA00013628
- Subject Headings
- Electron microscopy, Immunogold labeling, Image analysis, Deep learning
- Format
- Document (PDF)
- Title
- DEEP LEARNING OF POSTURAL AND OCULAR DYNAMICS TO PREDICT ENGAGEMENT AND LEARNING OF AUDIOVISUAL MATERIALS.
- Creator
- Perez, Nicole, Barenholtz, Elan, Florida Atlantic University, Department of Psychology, Charles E. Schmidt College of Science
- Abstract/Description
-
Engagement with educational instruction and related materials is an important part of learning and contributes to test performance. There are various measures of engagement including self-reports, observations, pupil diameter, and posture. With the challenges associated with obtaining accurate engagement levels, such as difficulties with measuring variations in engagement, the present study used a novel approach to predict engagement from posture by using deep learning. Deep learning was used...
Show moreEngagement with educational instruction and related materials is an important part of learning and contributes to test performance. There are various measures of engagement including self-reports, observations, pupil diameter, and posture. With the challenges associated with obtaining accurate engagement levels, such as difficulties with measuring variations in engagement, the present study used a novel approach to predict engagement from posture by using deep learning. Deep learning was used to analyze a labeled outline of the participants and extract key points that are expected to predict engagement. In the first experiment two short lectures were presented and participants were tested on a lecture to motivate engagement. The next experiment had videos that varied in interest to understand whether a more interesting presentation engages participants more, therefore helping participants achieve higher comprehension scores. In a third experiment, one video was presented to attempt to use posture to predict comprehension rather than engagement. The fourth experiment had videos that varied in level of difficulty to determine whether a challenging topic versus an easier topic affects engagement. T-tests revealed that the more interesting Ted Talk was rated as more engaging, and for the fourth study, the more difficult video was rated as more engaging. Comparing average pupil sizes did not reveal significant differences that would relate to differences in the engagement scores, and average pupil dilation did not correlate with engagement. Analyzing posture through deep learning resulted in three accurate predictive models and a way to predict comprehension. Since engagement relates to learning, researchers and educators can benefit from accurate engagement measures.
Show less - Date Issued
- 2020
- PURL
- http://purl.flvc.org/fau/fd/FA00013558
- Subject Headings
- Instruction, Effective teaching, Pupil (Eye), Posture, Deep learning, Engagement
- Format
- Document (PDF)
- Title
- Using Deep Learning Semantic Segmentation to Estimate Visual Odometry.
- Creator
- Blankenship, Jason R., Su, Hongbo, Florida Atlantic University, College of Engineering and Computer Science, Department of Civil, Environmental and Geomatics Engineering
- Abstract/Description
-
In this research, image segmentation and visual odometry estimations in real time are addressed, and two main contributions were made to this field. First, a new image segmentation and classification algorithm named DilatedU-NET is introduced. This deep learning based algorithm is able to process seven frames per-second and achieves over 84% accuracy using the Cityscapes dataset. Secondly, a new method to estimate visual odometry is introduced. Using the KITTI benchmark dataset as a baseline,...
Show moreIn this research, image segmentation and visual odometry estimations in real time are addressed, and two main contributions were made to this field. First, a new image segmentation and classification algorithm named DilatedU-NET is introduced. This deep learning based algorithm is able to process seven frames per-second and achieves over 84% accuracy using the Cityscapes dataset. Secondly, a new method to estimate visual odometry is introduced. Using the KITTI benchmark dataset as a baseline, the visual odometry error was more significant than could be accurately measured. However, the robust framerate speed made up for this, able to process 15 frames per second.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00005990
- Subject Headings
- Image segmentation, Computer vision, Deep learning, Visual odometry
- Format
- Document (PDF)