Current Search: Data analytics (x)
View All Items
- Title
- Big Data Analytics and Engineering for Medicare Fraud Detection.
- Creator
- Herland, Matthew Andrew, Khoshgoftaar, Taghi M., Florida Atlantic University, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
The United States (U.S.) healthcare system produces an enormous volume of data with a vast number of financial transactions generated by physicians administering healthcare services. This makes healthcare fraud difficult to detect, especially when there are considerably less fraudulent transactions than non-fraudulent. Fraud is an extremely important issue for healthcare, as fraudulent activities within the U.S. healthcare system contribute to significant financial losses. In the U.S., the...
Show moreThe United States (U.S.) healthcare system produces an enormous volume of data with a vast number of financial transactions generated by physicians administering healthcare services. This makes healthcare fraud difficult to detect, especially when there are considerably less fraudulent transactions than non-fraudulent. Fraud is an extremely important issue for healthcare, as fraudulent activities within the U.S. healthcare system contribute to significant financial losses. In the U.S., the elderly population continues to rise, increasing the need for programs, such as Medicare, to help with associated medical expenses. Unfortunately, due to healthcare fraud, these programs are being adversely affected, draining resources and reducing the quality and accessibility of necessary healthcare services. In response, advanced data analytics have recently been explored to detect possible fraudulent activities. The Centers for Medicare and Medicaid Services (CMS) released several ‘Big Data’ Medicare claims datasets for different parts of their Medicare program to help facilitate this effort. In this dissertation, we employ three CMS Medicare Big Data datasets to evaluate the fraud detection performance available using advanced data analytics techniques, specifically machine learning. We use two distinct approaches, designated as anomaly detection and traditional fraud detection, where each have very distinct data processing and feature engineering. Anomaly detection experiments classify by provider specialty, determining whether outlier physicians within the same specialty signal fraudulent behavior. Traditional fraud detection refers to the experiments directly classifying physicians as fraudulent or non-fraudulent, leveraging machine learning algorithms to discriminate between classes. We present our novel data engineering approaches for both anomaly detection and traditional fraud detection including data processing, fraud mapping, and the creation of a combined dataset consisting of all three Medicare parts. We incorporate the List of Excluded Individuals and Entities database to identify real world fraudulent physicians for model evaluation. Regarding features, the final datasets for anomaly detection contain only claim counts for every procedure a physician submits while traditional fraud detection incorporates aggregated counts and payment information, specialty, and gender. Additionally, we compare cross-validation to the real world application of building a model on a training dataset and evaluating on a separate test dataset for severe class imbalance and rarity.
Show less - Date Issued
- 2019
- PURL
- http://purl.flvc.org/fau/fd/FA00013215
- Subject Headings
- Big data, Medicare fraud, Data analytics, Machine learning
- Format
- Document (PDF)
- Title
- TACKLING BIAS, PRIVACY, AND SCARCITY CHALLENGES IN HEALTH DATA ANALYTICS.
- Creator
- Wang, Shuwen, Zhu, Xingquan, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
Health data analysis has emerged as a critical domain with immense potential to revolutionize healthcare delivery, disease management, and medical research. However, it is confronted by formidable challenges, including sample bias, data privacy concerns, and the cost and scarcity of labeled data. These challenges collectively impede the development of accurate and robust machine learning models for various healthcare applications, from disease diagnosis to treatment recommendations. Sample...
Show moreHealth data analysis has emerged as a critical domain with immense potential to revolutionize healthcare delivery, disease management, and medical research. However, it is confronted by formidable challenges, including sample bias, data privacy concerns, and the cost and scarcity of labeled data. These challenges collectively impede the development of accurate and robust machine learning models for various healthcare applications, from disease diagnosis to treatment recommendations. Sample bias and specificity refer to the inherent challenges in working with health datasets that may not be representative of the broader population or may exhibit disparities in their distributions. These biases can significantly impact the generalizability and effectiveness of machine learning models in healthcare, potentially leading to suboptimal outcomes for certain patient groups. Data privacy and locality are paramount concerns in the era of digital health records and wearable devices. The need to protect sensitive patient information while still extracting valuable insights from these data sources poses a delicate balancing act. Moreover, the geographic and jurisdictional differences in data regulations further complicate the use of health data in a global context. Label cost and scarcity pertain to the often labor-intensive and expensive process of obtaining ground-truth labels for supervised learning tasks in healthcare. The limited availability of labeled data can hinder the development and deployment of machine learning models, particularly in specialized medical domains.
Show less - Date Issued
- 2023
- PURL
- http://purl.flvc.org/fau/fd/FA00014336
- Subject Headings
- Data analytics, Data mining, Ensemble learning (Machine learning), Machine learning, Health
- Format
- Document (PDF)