Current Search: Computers, Special purpose (x)
View All Items
- Title
- Testing Momentum Enhancement Of Ribbon Fin Based Propulsion Using A Robotic Model With An Adjustable Body.
- Creator
- English, Ian L., Curet, Oscar M., Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
A robotic ribbon fin with twelve independent fin rays, elastic fin membrane, and a body of adjustable height was developed for this thesis specifically to test the 1990 theory put forth by Lighthill and Blake that a multiplicative propulsive enhancement exists for Gymnotiform and Balisiform swimmers based on the ratio of body and fin heights. Until now, the theory has not been experimentally tested. Proof of such a momentum enhancement could have a profound effect on unmanned underwater...
Show moreA robotic ribbon fin with twelve independent fin rays, elastic fin membrane, and a body of adjustable height was developed for this thesis specifically to test the 1990 theory put forth by Lighthill and Blake that a multiplicative propulsive enhancement exists for Gymnotiform and Balisiform swimmers based on the ratio of body and fin heights. Until now, the theory has not been experimentally tested. Proof of such a momentum enhancement could have a profound effect on unmanned underwater vehicle design and shed light on the evolutionary advantage to body-fin ratios found in nature, shown as optimal for momentum enhancement in Lighthill and Blake’s theory. Thrust tests for various body heights were conducted in a recirculating flow tank at different flow speeds and fin flapping frequencies. When comparing different body heights at different frequencies to a ’no-body’ thrust test case at each frequency no momentum enhancement factor was found. Data in this thesis indicate there is no momentum enhancement factor due to the presence of a body on top of an undulating fin.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004682, http://purl.flvc.org/fau/fd/FA00004682
- Subject Headings
- Animal locomotion, Animal mechanics, Biomechanics, Computers, Special purpose, Oceanographic submersibles, Robotics
- Format
- Document (PDF)
- Title
- Validity of Linear Position Transducers Versus the Optotrak Certus 3D Motion Capture System.
- Creator
- Goldsmith, Jacob A., Zourdos, Michael C., Florida Atlantic University, College of Education, Department of Exercise Science and Health Promotion
- Abstract/Description
-
The purpose of this study was to investigate the validity of linear position transducers (LPTs), The Open Barbell System (OBS) and Tendo Weightlifting Analyzer System (TWAS), in comparison to criterion measure Optotrak Certus (OC3D). Further, we aimed to compare LPTs against each other. Twenty-five resistance-trained males were recruited, and reported to the laboratory for one day of data collection. Subjects performed one-repetition maximum (1 RM) testing of the squat, then had a...
Show moreThe purpose of this study was to investigate the validity of linear position transducers (LPTs), The Open Barbell System (OBS) and Tendo Weightlifting Analyzer System (TWAS), in comparison to criterion measure Optotrak Certus (OC3D). Further, we aimed to compare LPTs against each other. Twenty-five resistance-trained males were recruited, and reported to the laboratory for one day of data collection. Subjects performed one-repetition maximum (1 RM) testing of the squat, then had a standardized rest before completing one set to failure with 70% 1 RM. There was no significant difference in average velocity (AV) between either LPT vs. OC3D. T-tests revealed significant differences between LPTs and OC3D peak velocity (PV) (OBS: p=0.02080; TWAS: p<0.01). A significant difference was detected between OBS and TWAS PV (p<0.01). OBS and TWAS demonstrated concurrent validity compared to OC3D for AV (OBS: p=0.2014; TWAS: p=0.5466). Neither LPT was a valid measure ofPV (OBS: p=0.0208; TWAS: p<0.01).
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004711, http://purl.flvc.org/fau/fd/FA00004711
- Subject Headings
- Biomechanics, Computers, Special purpose, Coordinate measuring machines, Mechatronics, Medical electronics -- Instrumentation, Transducers
- Format
- Document (PDF)
- Title
- Low Cost Robotic Car as a Way to Teach Mathematics.
- Creator
- Aguerrevere, Santiago Andres, Shankar, Ravi, Florida Atlantic University, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
This report describes the development of a low cost open source semiautonomous robotic car and a way to communicate with it. It is a continuation of prior research done by other students at FAU and published in recent ASEE conferences. The objective of this project was the development of a new robotic platform with improved precision over the original, while still keeping the cost down. It was developed with the aim to allow a hands-on approach to the teaching of mathematics topics that are...
Show moreThis report describes the development of a low cost open source semiautonomous robotic car and a way to communicate with it. It is a continuation of prior research done by other students at FAU and published in recent ASEE conferences. The objective of this project was the development of a new robotic platform with improved precision over the original, while still keeping the cost down. It was developed with the aim to allow a hands-on approach to the teaching of mathematics topics that are taught in the K-12 syllabus. Improved robustness and reliability of the robotic platform for visually solving math problems was achieved using a combination of PID loops to keep track of distance and rotation. The precision was increased by changing the position of the encoders to the shafts of each motor. A mobile application was developed to allow the student to draw the geometric shapes on the screen before the car draws them. The mobile application consists of two parts, the canvas that the user uses to draw the figure and the configure section that lets the user change the parameters of the controller. Results show that the robot can draw standard geometric and complex geometric shapes. It has high precision and sufficient accuracy, the accuracy can be improved with some mechanical adjustments. During testing a Pythagorean triangle was drawn to show visually the key mathematics concept. The eventual goal of this project will be a K-12 class room study to obtain the feedback of the teachers and students on the feasibility of using a robotic car to teach math. Subsequent to that necessary changes will be made to manufacture a unit that is easy to assemble by the teacher.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004712, http://purl.flvc.org/fau/fd/FA00004712
- Subject Headings
- Adaptive control systems, Applied mathematics, Artificial intelligence, Computers, Special purpose, Mathematics -- Study and teaching, User interfaces (Computer systems)
- Format
- Document (PDF)