Current Search: Chlorides--Environmental aspects. (x)
View All Items
- Title
- Chloride penetration into concrete structures exposed to the marine atmosphere.
- Creator
- Shill, Scott Thompson, Presuel-Moreno, Francisco, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Chloride ions present in the marine atmosphere contained in marine aerosols is investigated for a relationship with chloride that accumulated into concrete. Chloride profiles are conducted on several concrete mixes containing fly ash, silica fume, and slag, with water to cementitious ratios of 0.35, 0.41, and 0.47. The chloride accumulation in concrete samples exposed to the environment is investigated with relation to the chloride deposition from the marine atmosphere measured via the wet...
Show moreChloride ions present in the marine atmosphere contained in marine aerosols is investigated for a relationship with chloride that accumulated into concrete. Chloride profiles are conducted on several concrete mixes containing fly ash, silica fume, and slag, with water to cementitious ratios of 0.35, 0.41, and 0.47. The chloride accumulation in concrete samples exposed to the environment is investigated with relation to the chloride deposition from the marine atmosphere measured via the wet candle test. Results indicate a possible relationship for the total accumulated chloride in the concrete with the accumulated chloride deposition (wet candle). Over the exposure periods, concrete specimens with 50% slag addition and 0.47 w/cm had the lowest average rates of chloride accumulation for deposition under 100 g/m2day. Chloride accumulation was lower in concrete containing 20% fly ash and 8% silica fume with 0.35 w/cm for chloride deposition rates over 200 g/m2day.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004227, http://purl.flvc.org/fau/fd/FA00004227
- Subject Headings
- Chlorides -- Diffusion rate, Chlorides -- Environmental aspects, Concrete -- Chemical resistance, Concrete -- Permeability, Reinforced concrete -- Construction -- Corrosion
- Format
- Document (PDF)
- Title
- Correlation of Chloride Diffusivity and Electrical Resistance for Cracked Concrete.
- Creator
- Merantus, Stanley W., Reddy, Dronnadula V., Florida Atlantic University, College of Engineering and Computer Science, Department of Civil, Environmental and Geomatics Engineering
- Abstract/Description
-
The durability of Reinforced Concrete (RC) structures in the Marine environment is causing serious concern in the structural infrastructure. Reinforced concrete structures, exposed to aggressive environments, are expected to last with little or no maintenance for long periods of time. However, one of the most serious environmental exposures that causes degradation is Chloride Diffusion, due to shrinkage, atmospheric corrosion, and tide-induced wet and dry conditions at the air-water...
Show moreThe durability of Reinforced Concrete (RC) structures in the Marine environment is causing serious concern in the structural infrastructure. Reinforced concrete structures, exposed to aggressive environments, are expected to last with little or no maintenance for long periods of time. However, one of the most serious environmental exposures that causes degradation is Chloride Diffusion, due to shrinkage, atmospheric corrosion, and tide-induced wet and dry conditions at the air-water interfaces of coastal structures. Therefore, chloride diffusivity, which correlates with the electrical resistivity, has a significant impact on the durability of concrete. Concrete chloride diffusivity has been experimented by multiple agencies and researchers on sound concrete, but there is a considerable need for investigation of the durability of cracked concrete in the marine environment. The two test methods carried out are presented: Standardized American Society for Testing and Materials (ASTM) C1202 for Rapid Chloride Permeability (RCP) and ASTM D257 for Surface Resistivity (SR), and Nordtest (NT) Build 492 for Rapid Chloride Migration (RCM) and Bulk Resistivity (BR) for both sound (uncracked) and cracked (micro and macro) concrete. The limitations of the ASTM method, due to measurements before the steady-state migration is reached, does not account for leakage in cracked concrete, and the heating of the specimen due to higher current that increase the conductivity are indicated. The Rapid Chloride Migration test provides for the non-steady state of diffusion. Again, Bulk Resistivity, in contradistinction to Surface Resistivity is more accurate for cracked concrete. The correlation betweeen RCM-BR are plotted. Chloride Permeability/Migration is an important parameter that governs the Durability of Concrete. The principal contribution is the highlighting of the inadequacy of the current widely used standard ASTM C1202 for diffusivity testing, and the need for revision with further investigation.
Show less - Date Issued
- 2017
- PURL
- http://purl.flvc.org/fau/fd/FA00004942, http://purl.flvc.org/fau/fd/FA00004942
- Subject Headings
- Reinforced concrete--Construction--Corrosion., Reinforced concrete--Deterioration., Concrete--Corrosion., Concrete--Chemical resistance., Chlorides--Environmental aspects., Chlorides--Diffusion rate.
- Format
- Document (PDF)