Current Search: Cell metabolism (x)
View All Items
- Title
- Construction of mitochondrion-targeted telomerase for analysis in Saccharomyces cerevisiae.
- Creator
- Martin, Ricardo., Harriet L. Wilkes Honors College
- Abstract/Description
-
Telomerase is associated with telomere production and nDNA protection. However, studies by Santos et al. have demonstrated that human telomerase has a mitochondrial entry sequence and in the presence of hydrogen peroxide it has been found inside the mitochondrion and may cause mitochondrial DNA mutations. Saccharomyces cerevisiae contains telomerase, but it does not have the mitochondrial entry sequence. To determine if the presence of telomerase in the mitochondria can induce mutations an...
Show moreTelomerase is associated with telomere production and nDNA protection. However, studies by Santos et al. have demonstrated that human telomerase has a mitochondrial entry sequence and in the presence of hydrogen peroxide it has been found inside the mitochondrion and may cause mitochondrial DNA mutations. Saccharomyces cerevisiae contains telomerase, but it does not have the mitochondrial entry sequence. To determine if the presence of telomerase in the mitochondria can induce mutations an experiment was developed in which a mitochondrion entry sequence would be fused to the S. cerevisiae telomerase enzyme. This fusion could then be screened in S. cerevisiae with an ade2 mutation for a simple color assay of mitochondrial activity. To date, no successful transformant has been identified. The frequency of incorrect ligations has been recognized and may indicate that the desired fusion is lethal to E. coli cells.
Show less - Date Issued
- 2009
- PURL
- http://purl.flvc.org/FAU/209994
- Subject Headings
- Cell membranes, Formation, Mitochondrial DNA, Mutation (Biology), Cell metabolism
- Format
- Document (PDF)
- Title
- Determination of the acid dissociation constant of cytochrome B5 reductase.
- Creator
- Chong, Samantha., Harriet L. Wilkes Honors College
- Abstract/Description
-
Most living organisms transduce electron transport chains in order to obtain energy. Flavin adenine dinucleotide (FAD) is a common electron transfer cofactor found in electron transport proteins referred to as flavoproteins. In this study, the different ionization and oxidation states of this cofactor found in cytochrome b5 reductase were identified spectroscopically and quantified as a function of solution potential and pH. The large data sets obtained from these experiments were analyzed...
Show moreMost living organisms transduce electron transport chains in order to obtain energy. Flavin adenine dinucleotide (FAD) is a common electron transfer cofactor found in electron transport proteins referred to as flavoproteins. In this study, the different ionization and oxidation states of this cofactor found in cytochrome b5 reductase were identified spectroscopically and quantified as a function of solution potential and pH. The large data sets obtained from these experiments were analyzed and the acid dissociation constant for reduced cytochrome b5 reductase was determined.
Show less - Date Issued
- 2008
- PURL
- http://purl.flvc.org/FAU/77662
- Subject Headings
- Cell metabolism, Cellular signal transduction, Chemistry, Statistical methods, Electron spectroscopy
- Format
- Document (PDF)
- Title
- Identification of a truncated form of methionine sulfoxide reductase a expressed in mouse embryonic stem cells.
- Creator
- Jia, Pingping, Zhang, Chi, Jia, Yuanyuan, Webster, Keith A., Huang, Xupei, Kochegarov, Andrei A., Lemanski, Sharon L., Lemanski, Larry F.
- Date Issued
- 2011-06-22
- PURL
- http://purl.flvc.org/fcla/dt/3327268
- Subject Headings
- Cell nucleus -- metabolism, Cloning, Molecular, Cytosol --metabolism, Embryonic Stem Cells --metabolism, Methionine --metabolism, Methionine Sulfoxide Reductases, Methionine Sulfoxide Reductases --metabolism, Methionine Sulfoxide Reductases --genetics, Mitochondria --metabolism, Molecular Sequence Data, Oxidation --Reduction, Polymerase Chain Reaction, Reverse Transcriptase Polymerase Chain Reaction, Methionine
- Format
- Document (PDF)
- Title
- Reciprocal regulation between taurine and glutamate response via Ca2+ - dependent pathways in retinal third-order neurons.
- Creator
- Bulley, Simon, Shen, Wen
- Date Issued
- 2010-08-24
- PURL
- http://purl.flvc.org/fcla/dt/3327274
- Subject Headings
- Amacrine Cells*/cytology, Amacrine Cells*/drug effects, Amacrine Cells*/metabolism, Ambystoma, Calcium/metabolism, Calcium Channels/metabolism, Cells, Cultured, Enzyme Inhibitors/metabolism, Excitatory Amino Acid Agonists/pharmacology, GABA Antagonists/pharmacology, Glutamic Acid/metabolism, Glycine Agents/pharmacology, Kainic Acid/pharmacology, Membrane Glycoproteins, Membrane Potentials, Neurotransmitter Agents, Retinal Ganglion Cells, Signal Transduction, Synaptic Transmission
- Format
- Document (PDF)
- Title
- Creation of an aconitase overexpression strain of Saccharomyces cerevisiae for lifespan analysis.
- Creator
- Nunes, Steve., Harriet L. Wilkes Honors College
- Abstract/Description
-
In my thesis work, I attempted to construct a plasmid that would allow stable integration of genes into the Saccharomyces cerevisiae yeast genome under the control of the repressible TetO promoter. The yeast ACO1 gene was cloned under the control of the TetO operator and the tTA transactivator. This construct was inserted into yeast cells in order to observe the effects of aconitase overexpression on aging. Unfortunately, the transformed cells appeared incapable of aconitase expression as...
Show moreIn my thesis work, I attempted to construct a plasmid that would allow stable integration of genes into the Saccharomyces cerevisiae yeast genome under the control of the repressible TetO promoter. The yeast ACO1 gene was cloned under the control of the TetO operator and the tTA transactivator. This construct was inserted into yeast cells in order to observe the effects of aconitase overexpression on aging. Unfortunately, the transformed cells appeared incapable of aconitase expression as determined by glutamic acid auxptrophy, a phenotype of aconitase mutants. We have sequenced the pIT1ACO1 plasmid and have found many abnormalities in the promoter region. If the plasmid can be made to function as intended, the resulting yeast strain can be used in the future to determine if aconitase plays an important role in cellular aging.
Show less - Date Issued
- 2012
- PURL
- http://purl.flvc.org/FAU/3359306
- Subject Headings
- Yeast fungi, Research, Methodology, Microbial genetics, Genetic engineering, Aging, Molecular aspects, Cell metabolism, Mutation (Biology)
- Format
- Document (PDF)
- Title
- The effect of mutated aconitase on yeast longevity.
- Creator
- Kwan, CJ., Harriet L. Wilkes Honors College
- Abstract/Description
-
Aconitase is an important enzyme in the citric Acid Cycle, is needed for maintenance of mitochondrial DNA, is a key regulator of iron in the cell, and is very sensitive to oxidative stress. We have isolatd the yeast ACO1 gene, which codes for aconitase, and randomly mutated it to create a mutant library of cells each expressing a different version of ACO1. We will select for oxidative stress resistant aconitase in S. cerevisiae by subjecting strains to successive rounds of heat shock and...
Show moreAconitase is an important enzyme in the citric Acid Cycle, is needed for maintenance of mitochondrial DNA, is a key regulator of iron in the cell, and is very sensitive to oxidative stress. We have isolatd the yeast ACO1 gene, which codes for aconitase, and randomly mutated it to create a mutant library of cells each expressing a different version of ACO1. We will select for oxidative stress resistant aconitase in S. cerevisiae by subjecting strains to successive rounds of heat shock and competitive growth against other mutants. The "winner" of this competition will then be analyzed for which version of aconitase it is expressing, which may lead to increased longevity.
Show less - Date Issued
- 2012
- PURL
- http://purl.flvc.org/FAU/3359310
- Subject Headings
- Yeast fungi, Research, Microbial genetics, Aging, Molecular aspects, Mutation (Biology), Cell metabolism
- Format
- Document (PDF)
- Title
- The effect of acute moderate-intensity continuous and high intensity interval exercise on serum brain-derived neurotrophic factor in recreationally trained males.
- Creator
- Mock, Thomas J., Whitehurst, Michael, Florida Atlantic University, College of Education, Department of Exercise Science and Health Promotion
- Abstract/Description
-
BDNF is a neurotrophin that enhances neural health and is increased by exercise. PURPOSE: To compare moderate continuous (MCE) and high-intensity interval exercise (HIE) effects on serum BDNF levels, and examine the relationship between BDNF and lactate. METHODS: Seven males completed a VO2peak test and two protocols on separate days, (MCE) 28 min at 60% Workrate max (WRmax) and (HIE) 28 min of intervals at 90%WRmax (10- 1 min intervals separated by 2 min of rest). Serum BDNF and lactate were...
Show moreBDNF is a neurotrophin that enhances neural health and is increased by exercise. PURPOSE: To compare moderate continuous (MCE) and high-intensity interval exercise (HIE) effects on serum BDNF levels, and examine the relationship between BDNF and lactate. METHODS: Seven males completed a VO2peak test and two protocols on separate days, (MCE) 28 min at 60% Workrate max (WRmax) and (HIE) 28 min of intervals at 90%WRmax (10- 1 min intervals separated by 2 min of rest). Serum BDNF and lactate were determined prior, during, and following both protocols. RESULTS: BDNF levels (pg/mL) increased from baseline during HIE and MCE (p<.05). The BDNF response to HIE correlated with lactate for area under the curve (AUC) (r=0.901; P<0.05). CONCLUSION: HIE is an effective alternative to MCE at increasing BDNF. Additionally, lactate may act as a measure of intensity or a mediator of the BDNF response to exercise.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004219, http://purl.flvc.org/fau/fd/FA00004219
- Subject Headings
- Biochemical markers., Neurons--Physiology., Cell aging--Physiology., Neurotrophic function., Metabolic syndrome--Pathophysiology.
- Format
- Document (PDF)
- Title
- Relationships of fibroblast growth factor 21 with inflammation and insulin resistance in response to acute exercise in obese individuals.
- Creator
- Slusher, Aaron L., Huang, Chun-Jung, Florida Atlantic University, College of Education, Department of Exercise Science and Health Promotion
- Abstract/Description
-
Obesity is associated with elevated levels of the pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), contributing to systemic insulin resistance. Fibroblast growth factor 21 (FGF21) is a vital metabolic and inflammatory regulator, however circulating FGF21 concentrations are elevated in obese individuals. Acute aerobic exercise increases systemic FGF21 in normal-weight individuals, however the effect of acute aerobic exercise on plasma FGF21 response and...
Show moreObesity is associated with elevated levels of the pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), contributing to systemic insulin resistance. Fibroblast growth factor 21 (FGF21) is a vital metabolic and inflammatory regulator, however circulating FGF21 concentrations are elevated in obese individuals. Acute aerobic exercise increases systemic FGF21 in normal-weight individuals, however the effect of acute aerobic exercise on plasma FGF21 response and the relationships with inflammation (IL-6 and TNF-α), insulin resistance, and energy expenditure in obese individuals is unknown. Following 30 minutes of treadmill running at 75% VO2max, plasma FGF21 response, as indicated by area-under-the-curve “with respect to increase” (AUCi) analyses, was attenuated in 12 obese compared to 12 normalweight subjects. Additionally, FGF21 AUCi positively correlated with glucose AUCi, total relative energy expenditure, and relative VO2max, suggesting that cardiorespiratory fitness levels may predict FGF21 response, contributing to the enhanced regulation of glucose and energy metabolism.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004229, http://purl.flvc.org/fau/fd/FA00004229
- Subject Headings
- Fibroblast growth factor., Cell differentiation., Cellular signal transduction., Obesity--Health aspects., Metabolic syndrome--Pathophysiology.
- Format
- Document (PDF)
- Title
- Identification and characterization of mutations in the Drosophila mitochondrial translation elongation factor iconoclast.
- Creator
- Trivigno, Catherine F., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Mitochondrial disorders resulting from defects in oxidative phosphorylation are the most common form of inherited metabolic disease. Mutations in the human mitochondrial translation elongation factor GFM1 have recently been shown to cause the lethal pediatric disorder Combined Oxidative Phosphorylation Deficiency Syndrome (COXPD1). Children harboring mutations in GFM1 exhibit severe developmental, metabolic and neurological abnormalities. This work describes the identification and extensive...
Show moreMitochondrial disorders resulting from defects in oxidative phosphorylation are the most common form of inherited metabolic disease. Mutations in the human mitochondrial translation elongation factor GFM1 have recently been shown to cause the lethal pediatric disorder Combined Oxidative Phosphorylation Deficiency Syndrome (COXPD1). Children harboring mutations in GFM1 exhibit severe developmental, metabolic and neurological abnormalities. This work describes the identification and extensive characterization of the first known mutations in iconoclast (ico), the Drosophila orthologue of GFM1. Expression of human GFM1 can rescue ico null mutants, demonstrating functional conservation between the human and fly proteins. While point mutations in ico result in developmental defects and death during embryogenesis, animals null for ico survive until the second or third instar larval stage. These results indicate that in addition to loss-of-function consequences, point mutations in ico appear to produce toxic proteins with antimorphic or neomorphic effects. Consistent with this hypothesis, transgenic expression of a mutant ICO protein is lethal when expressed during development and inhibits growth when expressed in wing discs. In addition, animals with a single copy of an ico point mutation are more sensitive to acute hyperthermic or hypoxic stress. Removal of the positively-charged tail of the protein abolishes the toxic effects of mutant ICO, demonstrating that this domain is necessary for the harmful gain-of-function phenotypes observed in ico point mutants., Further, expression of GFP-tagged constructs indicates that the C-terminal tail enhances ectopic nuclear localization of mutant ICO, suggesting that mislocalization of the protein may play a role in the antimorphic effects of mutant ICO. Taken together, these results illustrate that in addition to loss-of-function effects, gain-of-function effects can contribute significantly to the pathology caused by mutation in mitochondrial translation elongation factors.
Show less - Date Issued
- 2010
- PURL
- http://purl.flvc.org/FAU/2705081
- Subject Headings
- Drosophila melanogaster, Cytogenetics, Mutation (Biology), Mitochondrial DNA, Cell metabolism, Cellular signal transduction, Oxidation, Physiological, Genetic transcription, Regulation
- Format
- Document (PDF)
- Title
- Molecular and phenotypic characterization of MsrA MsrB mutants of Drosophila melanogaster.
- Creator
- Robbins, Kelli., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Aging is a multifactoral biological process of progressive and deleterious changes partially attributed to a build up of oxidatively damaged biomolecules resulting from attacks by free radicals. Methionine sulfoxide reductases (Msrs) are enzymes that repair oxidized methionine (Met) residues found in proteins. Oxidized Met produces two enantiomers, Met-S-(o) and Met-R-(o), reduced by MsrA and MsrB respectively. Unlike other model organisms, our MsrA null fly mutant did not display increased...
Show moreAging is a multifactoral biological process of progressive and deleterious changes partially attributed to a build up of oxidatively damaged biomolecules resulting from attacks by free radicals. Methionine sulfoxide reductases (Msrs) are enzymes that repair oxidized methionine (Met) residues found in proteins. Oxidized Met produces two enantiomers, Met-S-(o) and Met-R-(o), reduced by MsrA and MsrB respectively. Unlike other model organisms, our MsrA null fly mutant did not display increased sensitivity to oxidative stress or shortened lifespan, suggesting that in Drosophila, having either a functional copy of either Msr is sufficient. Here, two Msr mutant types were phenotypically assayed against isogenic controls. Results suggest that only the loss of both MsrA and MsrB produces increased sensitivity to oxidative stress and shortened lifespan, while locomotor defects became more severe with the full Msr knockout fly.
Show less - Date Issued
- 2009
- PURL
- http://purl.flvc.org/FAU/359920
- Subject Headings
- Genetic regulation, Oxidation-reduction reaction, Proteins, Chemical modification, Aging, Molecular aspects, Mutation (Biology), Cell metabolism, Mitochondrial DNA
- Format
- Document (PDF)
- Title
- Investigating the Role of CHI3L1 in Promoting Tumor Growth and Metastasis Using Mammary Tumor Models.
- Creator
- Libreros, Stephania, Iragavarapu-Charyulu, Vijaya, Florida Atlantic University, Charles E. Schmidt College of Medicine, Department of Biomedical Science
- Abstract/Description
-
Metastasis is the primary cause of mortality in women with breast cancer. Recently, elevated serum levels of a glycoprotein known as chitinase-3 likeprotein- 1 (CHI3L1) has been correlated with poor prognosis and shorter survival of patients with cancer and inflammatory diseases. The biological and physiological functions of CHI3L1 in tumor progression have not yet been elucidated. In this document, we describe the role of CHI3L1 in tumor growth and metastasis and its relationship with...
Show moreMetastasis is the primary cause of mortality in women with breast cancer. Recently, elevated serum levels of a glycoprotein known as chitinase-3 likeprotein- 1 (CHI3L1) has been correlated with poor prognosis and shorter survival of patients with cancer and inflammatory diseases. The biological and physiological functions of CHI3L1 in tumor progression have not yet been elucidated. In this document, we describe the role of CHI3L1 in tumor growth and metastasis and its relationship with inflammation. Using well-established models of breast cancer, we show that CHI3L1 is increased in the serum of tumor bearing mice. We found that CHI3L1 levels are increased at both the “pre-metastatic” and “metastatic stage” and that tumor cells, splenic, alveolar and interstitial macrophages; and myeloid derived population produce CHI3L1. Furthermore, we demonstrated that CHI3L1 has an inhibitory role on the expression of interferon-gamma (IFN γ) by T cells, while enhancing the production of pro-inflammatory mediators by macrophages such as Cchemokine ligand 2 (CCL2/MCP-1), Chemokine CX motif ligand 2 (CXCL2/IL-8) and matrix metalloproteinase-9 (MMP-9), all of which promote tumor growth and metastasis. We demonstrated that in vivo treatment of tumor-bearing mice with chitin microparticles, a TH1 adjuvant and a substrate for CHI3L1, promoted immune effector functions with increased production of IFN-γ but decreased CCL2/MCP-1, CXCL2/IL-8 and MMP-9 expression by splenic and pulmonary macrophages. Significantly, in vivo administration of chitin microparticles decreased tumor growth and pulmonary metastasis in mammary tumor bearing mice. These results suggest that CHI3L1 may play a role in tumor progression. Inflammation plays a pivotal role during tumor progression and metastasis by promoting the production of pro-inflammatory molecules such as CHI3L1. However, little is known about how CHI3L1 expression can affect secondary sites to enhance metastasis. In these studies, we demonstrated that CHI3L1 alters the cellular composition and inflammatory mediators that aid in the establishment of a metastatic niche for the support of infiltrating tumor cells leading to accelerated tumor progression. Since previous studies showed that CHI3L1 modulates inflammation, we determined the role of CHI3L1 in the context of pre-existing inflammation and metastasis. We found that CHI3L1 deficient mice with preexisting inflammation had decreased pro-inflammatory mediators, and significant reduction in tumor volume and metastasis compared to wild type controls. Preexisting inflammation and CHI3L1 may be driving the establishment of a premetastatic milieu in the lungs and aiding in the establishment of metastasis. Understanding the role of CHI3L1 in inflammation during tumor progression could result in the design of targeted therapies for breast cancer patients.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004517, http://purl.flvc.org/fau/fd/FA00004517
- Subject Headings
- Biopharmaceutics, Breast -- Cancer -- Etiology, Breast -- Cancer -- Molecular aspects, Cell differentiation, Chitinase, Glycoproteins -- Metabolism, Inflammation, Mice as laboratory animals
- Format
- Document (PDF)
- Title
- Characterization of receptor protein tyrosine phosphatase PTP69D in the giant fiber circuit.
- Creator
- Lee, LaTasha Hoskins, Godenschwege, Tanja A., Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
PTP69D is a receptor protein tyrosine phosphatase (RPTP) with two intracellular catalytic domains (Cat1 and Cat2), which has been shown to play a role in axon outgrowth and guidance of embryonic motorneurons, as well as targeting of photoreceptor neurons in the visual system of Drosophila melanogaster. Here, we characterized the developmental role of PTP69D in the giant fiber (GF) neurons; two interneurons in the central nervous system (CNS) that control the escape response of the fly. In...
Show morePTP69D is a receptor protein tyrosine phosphatase (RPTP) with two intracellular catalytic domains (Cat1 and Cat2), which has been shown to play a role in axon outgrowth and guidance of embryonic motorneurons, as well as targeting of photoreceptor neurons in the visual system of Drosophila melanogaster. Here, we characterized the developmental role of PTP69D in the giant fiber (GF) neurons; two interneurons in the central nervous system (CNS) that control the escape response of the fly. In addition to guidance and targeting functions, our studies reveal an additional role for PTP69D in synaptic terminal growth in the CNS. We found that inhibition of phosphatase activity in catalytic domain (Cat1) proximal to the transmembrane domain did not affect axon guidance or targeting but resulted in stunted terminal growth of the GFs. Cell autonomous rescue and knockdown experiments demonstrated a function for PTP69D in the GFs, but not its postsynaptic target neurons. In addition,complementation studies and structure-function analyses revealed that for GF terminal growth, Cat1 function of PTP69D requires the immunoglobulin and the Cat2 domain but not the fibronectin type III repeats nor the membrane proximal region. In contrast, the fibronectin type III repeats, but not the immunoglobulin domains, were previously shown to be essential for axon targeting of photoreceptor neurons. Thus, our studies uncover a novel role for PTP69D in synaptic terminal growth in the CNS that is mechanistically distinct from its function during earlier developmental processes.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004301, http://purl.flvc.org/fau/fd/FA00004301
- Subject Headings
- Drosophila melanogaster., Protein-tyrosine phosphatase--Metabolism., Protein-tyrosine kinase., Protein kinases--Inhibitors., Phosphoprotein phosphatases., Transcription factors., Cell receptors., Cellular signal transduction.
- Format
- Document (PDF)