Current Search: Carbon composites (x)
View All Items
- Title
- Effects of Carbon Nanotube (CNT) Dispersion and Interface Condition on Thermo-Mechanical Behavior of CNT-Reinforced Vinyl Ester.
- Creator
- Sabet, Seyed Morteza, Mahfuz, Hassan, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
In fabrication of nanoparticle-reinforced polymers, two critical factors need to be taken into account to control properties of the final product; nanoparticle dispersion/distribution in the matrix; and interfacial interactions between nanoparticles and their surrounding matrix. The focus of this thesis was to examine the role of these two factors through experimental methodologies and molecular-level simulations. Carbon nanotubes (CNTs) and vinyl ester (VE) resin were used as nanoparticles...
Show moreIn fabrication of nanoparticle-reinforced polymers, two critical factors need to be taken into account to control properties of the final product; nanoparticle dispersion/distribution in the matrix; and interfacial interactions between nanoparticles and their surrounding matrix. The focus of this thesis was to examine the role of these two factors through experimental methodologies and molecular-level simulations. Carbon nanotubes (CNTs) and vinyl ester (VE) resin were used as nanoparticles and matrix, respectively. In a parametric study, a series of CNT/VE nanocomposites with different CNT dispersion conditions were fabricated using the ultrasonication mixing method. Thermomechanical properties of nanocomposites and quality of CNT dispersion were evaluated. By correlation between nanocomposite behavior and CNT dispersion, a thermomechanical model was suggested; at a certain threshold level of sonication energy, CNT dispersion would be optimal and result in maximum enhancement in properties. This threshold energy level is also related to particle concentration. Sonication above this threshold level, leads to destruction of nanotubes and renders a negative effect on the properties of nanocomposites. In an attempt to examine the interface condition, a novel process was developed to modify CNT surface with polyhedral oligomeric silsesquioxane (POSS). In this process, a chemical reaction was allowed to occur between CNTs and POSS in the presence of an effective catalyst. The functionalized CNTs were characterized using TEM, SEM-EDS, AFM, TGA, FTIR and Raman spectroscopy techniques. Formation of amide bonds between POSS and nanotubes was established and verified. Surface modification of CNTs with POSS resulted in significant improvement in nanotube dispersion. In-depth SEM analysis revealed formation of a 3D network of well-dispersed CNTs with POSS connections to the polymer. In parallel, molecular dynamics simulation of CNT-POSS/VE system showed an effective load transfer from polymer chains to the CNT due to POSS linkages at the interface. The rigid and flexible network of CNTs is found to be responsible for enhancement in elastic modulus, strength, fracture toughness and glass transition temperature (Tg) of the final nanocomposites.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004628, http://purl.flvc.org/fau/fd/FA00004628
- Subject Headings
- Carbon nanotubes., Carbon composites., Polymeric composites., Fibrous composites, Nanostructured materials., Composite materials--Mechanical properties.
- Format
- Document (PDF)
- Title
- The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda.
- Creator
- Caron, D.A., Dam, H. G., Kremer, P., Lessard, E. J., Madin, L. P., Malone, Tom C., Napp, J. M., Peele, E. R., Roman, M. R., Youngbluth, Marsh J.
- Date Issued
- 1995
- PURL
- http://purl.flvc.org/FCLA/DT/3331907
- Subject Headings
- Carbon, Nitrogen, Seawater--Composition, Sargasso Sea, Microorganisms
- Format
- Document (PDF)
- Title
- A study of the effects of nanoparticle modification on the thermal, mechanical and hygrothermal performance of carbon/vinyl ester compounds.
- Creator
- Powell, Felicia M., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Enhancement of mechanical, thermal and hygrothermal properties of carbon fiber/vinyl ester (CFVE) composites through nanoparticle reinforcement has been investigated. CFVE composites are becoming more and more attractive for marine applications due to two reasons : high specific strength and modulus of carbon fiber and low vulnerability of vinyl ester resin to sea water. However, the problem with this composite system is that the fiber matrix (F/M) interface is inherently weak. This leads to...
Show moreEnhancement of mechanical, thermal and hygrothermal properties of carbon fiber/vinyl ester (CFVE) composites through nanoparticle reinforcement has been investigated. CFVE composites are becoming more and more attractive for marine applications due to two reasons : high specific strength and modulus of carbon fiber and low vulnerability of vinyl ester resin to sea water. However, the problem with this composite system is that the fiber matrix (F/M) interface is inherently weak. This leads to poor mechanical properties and fast ingress of water at the interface further deteriorating the properties. This investigation attempts to address these deficiencies by inclusion of nanoparticles in CFVE composites. Three routes of nanoparticle reinforcement have been considered : nanoparticle coating of the carbon fiber, dispersion of nanoparticles in the vinyl ester matrix, and nanoparticle modification of both the fiber and the matrix. Flexural, short beam shear and tensile testing was conducted after exposure to dry and wet environments. Differential scanning calorimetry and dynamic mechanical analysis were conducted as well. Mechanical and thermal tests show that single inclusion of nanoparticles on the fiber or in the matrix increases carbon/vinyl ester composite properties by 11-35%. However, when both fiber and matrix were modified with nanoparticles, there was a loss of properties.
Show less - Date Issued
- 2012
- PURL
- http://purl.flvc.org/FAU/3352286
- Subject Headings
- Composite materials, Mechanical properties, Nanostructured materials, Testing, Carbon compounds, Testing, Fibrous composites, Testing, Surface chemistry
- Format
- Document (PDF)
- Title
- Electrochemical impedance spectroscopy to monitor degradation of carbon fiber reinforced polymer composites subjected to simulated ocean environment.
- Creator
- Ahmed, Mohammad Mesbahuddin., Florida Atlantic University, Lipka, Stephen M.
- Abstract/Description
-
This research evaluated the applicability of electrochemical impedance spectroscopy (EIS) as a non-destructive technique to predict and characterize the degradation of carbon fiber reinforced polymer (CFRP) composites exposed to aqueous environments at ambient and 6.2 $\pm$ 0.3 MPa. Changes in EIS data were related to water uptake into the composite material as a function of exposure time. Electrochemically induced damage (both anodic and cathodic) were also evaluated using impedance...
Show moreThis research evaluated the applicability of electrochemical impedance spectroscopy (EIS) as a non-destructive technique to predict and characterize the degradation of carbon fiber reinforced polymer (CFRP) composites exposed to aqueous environments at ambient and 6.2 $\pm$ 0.3 MPa. Changes in EIS data were related to water uptake into the composite material as a function of exposure time. Electrochemically induced damage (both anodic and cathodic) were also evaluated using impedance measurements. Three point flexure tests with concurrent EIS measurements were employed to study the effect of stresses on water uptake and mechanical degradation. Visual observation of the extent of damage (i.e., fiber-matrix debonding) was made using scanning electron microscopy (SEM) and correlated with EIS observation.
Show less - Date Issued
- 1993
- PURL
- http://purl.flvc.org/fcla/dt/14962
- Subject Headings
- Polymers--Deterioration, Composite materials--Environmental aspects, Carbon fibers, Polymeric composites, Spectrum analysis
- Format
- Document (PDF)
- Title
- The effects of nitric acid and silane surface treatments on carbon fibers and carbon/vinyl ester composites before and after seawater exposure.
- Creator
- Langston, Tye A., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
This research focuses on carbon fiber treatment by nitric acid and 3- (trimethoxysilyl)propyl methacrylate silane, and how this affects carbon/vinyl ester composites. These composites offer great benefits, but it is difficult to bond the fiber and matrix together, and without a strong interfacial bond, composites fall short of their potential. Silanes work well with glass fiber, but do not bond directly to carbon fiber because its surface is not reactive to liquid silanes. Oxidizing surface...
Show moreThis research focuses on carbon fiber treatment by nitric acid and 3- (trimethoxysilyl)propyl methacrylate silane, and how this affects carbon/vinyl ester composites. These composites offer great benefits, but it is difficult to bond the fiber and matrix together, and without a strong interfacial bond, composites fall short of their potential. Silanes work well with glass fiber, but do not bond directly to carbon fiber because its surface is not reactive to liquid silanes. Oxidizing surface treatments are often prescribed for improved wetting and bonding to carbon, but good results are not always achieved. Furthermore, there is the unanswered question of environmental durability. This research aimed to form a better understanding of oxidizing carbon fiber treatments, determine if silanes can be bonded to oxidized surfaces, and how these treatments affect composite strength and durability before and after seawater exposure. Nitric acid treatments on carbon fibers were found to improve their tensile strength to a constant level by smoothing surface defects and chemically modifying their surfaces by increasing carbonyl and carboxylic acid concentrations. Increasing these surface group concentrations raises fiber polar energy and causes them to cohere. This impedes wetting, resulting in poor quality, high void content composites, even though there appeared to be improved adhesion between the fibers and matrix. Silane was found to bond to the oxidized carbon fiber surfaces, as evidenced by changes in both fiber and composite properties. The fibers exhibited low polarity and cohesion, while the composites displayed excellent resin wetting, low void content, and low seawater weight gain and swelling. On the contrary, the oxidized fibers that were not treated with silane exhibited high polarity and fiber cohesion., Their composites displayed poor wetting, high void content, high seawater weight gain, and low swelling. Both fiber treatment types resulted in great improvements in dry transverse tensile strength over the untreated fibers, but the oxidized fiber composites lost strength as the acid treatment time was extended, due to poor wetting. The acid/silane treated composites lost some transverse tensile strength after seawater exposure, but the nitric acid oxidized fiber composites appeared to be more seawater durable.
Show less - Date Issued
- 2008
- PURL
- http://purl.flvc.org/FAU/172669
- Subject Headings
- Silane compounds, Testing, Surface chemistry, Composite materials, Biodegradation, Carbon compounds, Testing
- Format
- Document (PDF)
- Title
- Chemical Method and Device to Detect Underwater Trace Explosives via Photo-Luminescence.
- Creator
- Langston, Tye A., Florida Atlantic University, Granata, Richard D., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
This research tests the use of sensitized lanthanide ions to determine if they can detect water-borne explosive traces and produces two designs for a field-deployable underwater explosive trace detector. 1,1 0-phenanthroline and thenoyltritluoroacetone are evaluated as sensitizing ligands to absorb energy and initiate the fluorescence process in europium ions. Different compounds obtained via ligand choice and mixing order are evaluated for their ability to produce a large fluorescence...
Show moreThis research tests the use of sensitized lanthanide ions to determine if they can detect water-borne explosive traces and produces two designs for a field-deployable underwater explosive trace detector. 1,1 0-phenanthroline and thenoyltritluoroacetone are evaluated as sensitizing ligands to absorb energy and initiate the fluorescence process in europium ions. Different compounds obtained via ligand choice and mixing order are evaluated for their ability to produce a large fluorescence differential between explosive-laden and explosive-absent solutions. Optimal excitation and emission wavelengths for several different compounds are determined, as well as practical wavelengths to be applied in the field. The effect of methanol as a solvent to deliver the reagents is evaluated and rough solubility limits are determined. The effects of seawater constituents on detection are investigated and explosive detection limits are determined. It was found that this method and device are viable for underwater explosive trace detection. A field-deployable device is designed, characterized, and proven.
Show less - Date Issued
- 2006
- PURL
- http://purl.flvc.org/fau/fd/FA00012600
- Subject Headings
- Silane compounds--Testing, Surface chemistry, Composite materials--Biodegradation, Carbon compounds--Testing
- Format
- Document (PDF)
- Title
- Effects of POSS Fiber Sizing on the Mechanical and Thermal Properties of CarbonNinyl Ester Composites.
- Creator
- Powell, Felicia M., Mahfuz, Hassan, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The degradation of polymer composites in moist environments is a limiting factor in the advancement of composite technology. The key to mitigate this degradation is to maintain the integrity of the fiber/matrix (F/M) interface. In this study, the F/M interface of carbon/vinyl ester composites has been modified by treating the carbon fiber with polyhedral oligomeric silsesquioxane (POSS). Two POSS systems, namely octaisobutyl and trisilanolphenyl, have been investigated. A set of chemical and...
Show moreThe degradation of polymer composites in moist environments is a limiting factor in the advancement of composite technology. The key to mitigate this degradation is to maintain the integrity of the fiber/matrix (F/M) interface. In this study, the F/M interface of carbon/vinyl ester composites has been modified by treating the carbon fiber with polyhedral oligomeric silsesquioxane (POSS). Two POSS systems, namely octaisobutyl and trisilanolphenyl, have been investigated. A set of chemical and mechanical procedures has been developed to coat carbon fibers with POSS, and fabricate layered composites using vinyl ester resin. lnterlaminar shear, transverse tension, and low velocity impact tests on composites have indicated around 10-38% improvement in mechanical properties with respect to control samples. Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) tests have also shown significant improvement in glass transition temperature (T9). Hygrothermal tests, under various environments, have demonstrated that POSS reduces water absorption by 20-30%.
Show less - Date Issued
- 2009
- PURL
- http://purl.flvc.org/fau/fd/FA00012540
- Subject Headings
- Surface chemistry, Composite materials--Biodegradation, Carbon compounds--Testing, Thermodynamics, Fibrous compounds--Testing
- Format
- Document (PDF)
- Title
- Feasibility studies on carbon fiber composite cables in reinforced/prestressed concrete structures.
- Creator
- Kanneganti, Srikanth., Florida Atlantic University, Arockiasamy, Madasamy, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The feasibility studies on the use of non-metallic continuous fiber reinforcement in reinforced and prestressed concrete structures are presented herein. Experimental results from studies on relaxation, bond and transfer length of Carbon Fiber Composite Cables (CFCC) are presented followed by results of flexural load tests on concrete beams reinforced and prestressed with CFCC. Durability of the CFCC is another prime concern, and hence part of the study also focuses on establishing the...
Show moreThe feasibility studies on the use of non-metallic continuous fiber reinforcement in reinforced and prestressed concrete structures are presented herein. Experimental results from studies on relaxation, bond and transfer length of Carbon Fiber Composite Cables (CFCC) are presented followed by results of flexural load tests on concrete beams reinforced and prestressed with CFCC. Durability of the CFCC is another prime concern, and hence part of the study also focuses on establishing the durability of the CFCC exposed to aggressive environments like alkali solution and sea water. The basic mechanics that govern the structural behavior of the beams, provide important insight into the potential that CFCC has to offer.
Show less - Date Issued
- 1994
- PURL
- http://purl.flvc.org/fcla/dt/15080
- Subject Headings
- Fiber reinforced plastics, Reinforced concrete, Fiber, Composite materials, Prestressed concrete construction--Deterioration, Carbon fibers
- Format
- Document (PDF)
- Title
- Peel-off characteristics of carbon fiber laminates bonded to concrete.
- Creator
- Barbosa, Mauro., Florida Atlantic University, Arockiasamy, Madasamy
- Abstract/Description
-
This study presents the experimental and theoretical studies on debond of carbon fiber laminates bonded to concrete, which aids in understanding the mechanics of the repaired damaged prestressed concrete girders with externally bonded carbon plates. The bond strength of carbon plate specimens bonded to concrete is determined experimentally by the debond test. The initial crack is introduced in the specimens at one location, namely the plate/adhesive interface. The fracture toughness for...
Show moreThis study presents the experimental and theoretical studies on debond of carbon fiber laminates bonded to concrete, which aids in understanding the mechanics of the repaired damaged prestressed concrete girders with externally bonded carbon plates. The bond strength of carbon plate specimens bonded to concrete is determined experimentally by the debond test. The initial crack is introduced in the specimens at one location, namely the plate/adhesive interface. The fracture toughness for debonding is evaluated and expressed as the critical strain energy release rate. A finite element analysis was performed to evaluate the compliance and stress distribution in the debond test specimens.
Show less - Date Issued
- 2000
- PURL
- http://purl.flvc.org/fcla/dt/12669
- Subject Headings
- Prestressed concrete construction--Maintenance and repair, Fracture mechanics, Carbon composites
- Format
- Document (PDF)
- Title
- Feasibility of using carbon fiber reinforced plastic tendons in prestressed concrete Double-Tee bridge system.
- Creator
- Zhuang, Ming., Florida Atlantic University, Arockiasamy, Madasamy, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
One of the major problems the construction industry faces today is corrosion of reinforcing and prestressing steel, which significantly affects the durability of concrete structures. Fiber reinforced plastics (FRPs) are highly regarded as prospective replacement for steel in prestressed concrete structures under corrosive environment. This investigation was conducted to establish the feasibility of using Carbon Fiber Composite (CFC) cables as reinforcing/prestressing elements in concrete...
Show moreOne of the major problems the construction industry faces today is corrosion of reinforcing and prestressing steel, which significantly affects the durability of concrete structures. Fiber reinforced plastics (FRPs) are highly regarded as prospective replacement for steel in prestressed concrete structures under corrosive environment. This investigation was conducted to establish the feasibility of using Carbon Fiber Composite (CFC) cables as reinforcing/prestressing elements in concrete bridge structures. Besides investigating durability of CFC cables and pretensioned concrete beams with CFC cables in adverse environments (alkali and seawater), flexure and shear tests were performed on single Double-Tee beams, together with service load behavior, fatigue strength and ultimate load capacity tests on a half scale model Double-Tee girder bridge system prestressed with CFC cables. Exposure to seawater and alkali environments has no adverse effect on the strength of the CFRP tendons as well as the pretensioned beams with CFRP. Based on the flexural strength tests on Double-Tee beams, the bond between CFRP tendons and concrete is satisfactory. The Double-Tee bridge system exhibited good fatigue resistance and adequate ductility under ultimate load conditions. The ultimate load capacity of the bridge is approximately three times the service load corresponding to two HS20-44 trucks and equals 2.4 times the first crack load. Finite element analyses were carried out to predict elastic deformations and collapse load of the Double-Tee bridge prestressed with CFC cables. Feasibility of using CFC cables in bridge structures is assessed based on the experimental and analytical parameters such as deflections, strains, crack distributions and crack widths.
Show less - Date Issued
- 1996
- PURL
- http://purl.flvc.org/fcla/dt/12465
- Subject Headings
- Carbon fibers, Composite construction, Fiber reinforced plastics, Bridges, Iron and steel, Reinforced concrete construction, Prestressed concrete construction
- Format
- Document (PDF)
- Title
- Theoretical analysis of reinforced and prestressed concrete bridge members strengthened with CFRP laminates.
- Creator
- Qu, Rong., Florida Atlantic University, Arockiasamy, Madasamy, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Nonlinear finite element analyses of the reinforced rectangular beams, prestressed solid slab and prestressed voided slab retrofitted with CFRP laminates are carried out using the software ANSYS(version 5.0) on the Sunwork station. The computer analyses are based on the proposed stress-strain relationship considering the effects of tensile stress on both elastic modulus and maximum compressive stress of concrete. Several assumptions are made in predicting the loss of tensile strength due to...
Show moreNonlinear finite element analyses of the reinforced rectangular beams, prestressed solid slab and prestressed voided slab retrofitted with CFRP laminates are carried out using the software ANSYS(version 5.0) on the Sunwork station. The computer analyses are based on the proposed stress-strain relationship considering the effects of tensile stress on both elastic modulus and maximum compressive stress of concrete. Several assumptions are made in predicting the loss of tensile strength due to crack, confinement due to the laminate bonding, tensile strength due to the prestress force, failure pattern due to the concentrated stress adjacent to the loading point and concrete crushing due to large compressive strain. A subroutine is developed using macro commands of ANSYS. In this research, Branson's equation or Ie procedure is assumed in the prediction of deflection of retrofitted concrete members. The modifications needed due to laminate bonding are the cracking moments of inertia (Icr) of the beams or slabs bonded with CFRP laminates, which are included in the analysis.
Show less - Date Issued
- 1994
- PURL
- http://purl.flvc.org/fcla/dt/15083
- Subject Headings
- ANSYS (Computer system), Reinforced concrete--Plastic properties, Carbon composites, Fiber reinforced plastics, Bridges--Design and construction, Prestressed concrete construction
- Format
- Document (PDF)