Current Search: Breast--Cancer--Molecular aspects (x)
View All Items
- Title
- Investigating the Role of CHI3L1 in Promoting Tumor Growth and Metastasis Using Mammary Tumor Models.
- Creator
- Libreros, Stephania, Iragavarapu-Charyulu, Vijaya, Florida Atlantic University, Charles E. Schmidt College of Medicine, Department of Biomedical Science
- Abstract/Description
-
Metastasis is the primary cause of mortality in women with breast cancer. Recently, elevated serum levels of a glycoprotein known as chitinase-3 likeprotein- 1 (CHI3L1) has been correlated with poor prognosis and shorter survival of patients with cancer and inflammatory diseases. The biological and physiological functions of CHI3L1 in tumor progression have not yet been elucidated. In this document, we describe the role of CHI3L1 in tumor growth and metastasis and its relationship with...
Show moreMetastasis is the primary cause of mortality in women with breast cancer. Recently, elevated serum levels of a glycoprotein known as chitinase-3 likeprotein- 1 (CHI3L1) has been correlated with poor prognosis and shorter survival of patients with cancer and inflammatory diseases. The biological and physiological functions of CHI3L1 in tumor progression have not yet been elucidated. In this document, we describe the role of CHI3L1 in tumor growth and metastasis and its relationship with inflammation. Using well-established models of breast cancer, we show that CHI3L1 is increased in the serum of tumor bearing mice. We found that CHI3L1 levels are increased at both the “pre-metastatic” and “metastatic stage” and that tumor cells, splenic, alveolar and interstitial macrophages; and myeloid derived population produce CHI3L1. Furthermore, we demonstrated that CHI3L1 has an inhibitory role on the expression of interferon-gamma (IFN γ) by T cells, while enhancing the production of pro-inflammatory mediators by macrophages such as Cchemokine ligand 2 (CCL2/MCP-1), Chemokine CX motif ligand 2 (CXCL2/IL-8) and matrix metalloproteinase-9 (MMP-9), all of which promote tumor growth and metastasis. We demonstrated that in vivo treatment of tumor-bearing mice with chitin microparticles, a TH1 adjuvant and a substrate for CHI3L1, promoted immune effector functions with increased production of IFN-γ but decreased CCL2/MCP-1, CXCL2/IL-8 and MMP-9 expression by splenic and pulmonary macrophages. Significantly, in vivo administration of chitin microparticles decreased tumor growth and pulmonary metastasis in mammary tumor bearing mice. These results suggest that CHI3L1 may play a role in tumor progression. Inflammation plays a pivotal role during tumor progression and metastasis by promoting the production of pro-inflammatory molecules such as CHI3L1. However, little is known about how CHI3L1 expression can affect secondary sites to enhance metastasis. In these studies, we demonstrated that CHI3L1 alters the cellular composition and inflammatory mediators that aid in the establishment of a metastatic niche for the support of infiltrating tumor cells leading to accelerated tumor progression. Since previous studies showed that CHI3L1 modulates inflammation, we determined the role of CHI3L1 in the context of pre-existing inflammation and metastasis. We found that CHI3L1 deficient mice with preexisting inflammation had decreased pro-inflammatory mediators, and significant reduction in tumor volume and metastasis compared to wild type controls. Preexisting inflammation and CHI3L1 may be driving the establishment of a premetastatic milieu in the lungs and aiding in the establishment of metastasis. Understanding the role of CHI3L1 in inflammation during tumor progression could result in the design of targeted therapies for breast cancer patients.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004517, http://purl.flvc.org/fau/fd/FA00004517
- Subject Headings
- Biopharmaceutics, Breast -- Cancer -- Etiology, Breast -- Cancer -- Molecular aspects, Cell differentiation, Chitinase, Glycoproteins -- Metabolism, Inflammation, Mice as laboratory animals
- Format
- Document (PDF)
- Title
- Therapeutic potential of pomegranate and genistein for human breast cancer.
- Creator
- Louis Jeune, Marie Adeline, Florida Atlantic University, Kumi-Diaka, James
- Abstract/Description
-
The therapeutic potential of pomegranate and genistein on growth inhibition of human breast cancer cells was investigated. Methods. Cells (MCF-7) were initially cultured for 48 hr to achieve 80% confluence; and then exposed to the agents in single and combination treatments. Post-treatment analysis was done by using a series of bioassays, including LDH, MTS, AcrO-EthBr, Annexin-FITC and TUNEL assays for growth inhibition and apoptosis detection; and Caspase-3 and NQO1 for molecular pathways...
Show moreThe therapeutic potential of pomegranate and genistein on growth inhibition of human breast cancer cells was investigated. Methods. Cells (MCF-7) were initially cultured for 48 hr to achieve 80% confluence; and then exposed to the agents in single and combination treatments. Post-treatment analysis was done by using a series of bioassays, including LDH, MTS, AcrO-EthBr, Annexin-FITC and TUNEL assays for growth inhibition and apoptosis detection; and Caspase-3 and NQO1 for molecular pathways of apoptosis. Results. Pomegranate and genistein showed significant dose- and time-dependent cytotoxic and growth inhibition effects as well as apoptosis induction in MCF-7 cancer cells, with significantly higher ( P < 0.01) effects in the combination treatments than in the single treatments. Both drugs induced apoptosis through a caspase-mediated mechanism and independent of NQO1. Discussion and conclusions. Pomegranate and genistein inhibit the growth of MCF-7 breast cancer cells through induction of apoptosis with combination treatment being more efficacious than single treatments.
Show less - Date Issued
- 2004
- PURL
- http://purl.flvc.org/fcla/dt/13130
- Subject Headings
- Phytochemicals--Physiological effect, Breast--Cancer--Molecular aspects, Women--Diseases--Alternative treatment, Apoptosis--Molecular aspects, Breast--Cancer--Treatment
- Format
- Document (PDF)
- Title
- Genistein targets only proliferating but not quiescent cells: Potential therapeutic significance in breast cancer.
- Creator
- Bodepudi, Sreedevi., Florida Atlantic University, Kumi-Diaka, James
- Abstract/Description
-
Phytochemicals are biologically active secondary plant metabolites that could mimic biological activities. In this study genistein isoflavone, a phytochemical present in soy was investigated to determine its effect on the growth of human breast cancer cell line GI-101 and normal breast epithelial cells in vitro. The cells were exposed to varying concentrations of genistein isoflavone for 24 and 48 hour time periods and the effect was determined using post-treatment assays: MTT and Trypan Blue...
Show morePhytochemicals are biologically active secondary plant metabolites that could mimic biological activities. In this study genistein isoflavone, a phytochemical present in soy was investigated to determine its effect on the growth of human breast cancer cell line GI-101 and normal breast epithelial cells in vitro. The cells were exposed to varying concentrations of genistein isoflavone for 24 and 48 hour time periods and the effect was determined using post-treatment assays: MTT and Trypan Blue for cell viability; LDH assay for cytotoxicity; Rhodamine 123/Propidium Iodide and Ethidium Bromide/Acridine Orange assays for treatment-induced apoptosis and FAM Poly caspase assay for mechanism of action. The overall results revealed that genistein inhibited cell growth and proliferation through apoptosis in the cells in both time and dose-dependent manner. Normal breast epithelial cells were not significantly affected by genistein at the corresponding dosages. Based on the results obtained, it was concluded that genistein isoflavone could offer therapeutic efficacy in human breast carcinoma without significantly affecting the normal breast epithelial cells.
Show less - Date Issued
- 2006
- PURL
- http://purl.flvc.org/fcla/dt/13315
- Subject Headings
- Phytochemicals--Physiological effect, Breast--Cancer--Molecular aspects, Women--Diseases--Alternative treatment, Breast--Cancer--Treatment, Apoptosis--Molecular aspects
- Format
- Document (PDF)