Current Search: Brachytherapy (x)
View All Items
- Title
- Motion challenges in high dose rate (HDR) brachytherapy.
- Creator
- Curley, Casey Michael, Pella, Silvia, Leventouri, Theodora, Graduate College
- Date Issued
- 2013-04-12
- PURL
- http://purl.flvc.org/fcla/dt/3361287
- Subject Headings
- Brachytherapy, Leipzig, Immobilization
- Format
- Document (PDF)
- Title
- Accurate verification of balloon rotation correction for the contura® multi-lumen device for accelerated partial breast irradiation.
- Creator
- Kyriacou, Andreas, Benda, R., Vargas, C., Lyden, M., Vicini , F., Leventouri, Theodora, Graduate College, Kasper, M.
- Date Issued
- 2011-04-08
- PURL
- http://purl.flvc.org/fcla/dt/3171046
- Subject Headings
- Breast --Cancer --Radiotherapy, Brachytherapy, Breast Neoplasms --surgery
- Format
- Document (PDF)
- Title
- Dosimetric and Radiobiological Plan Evaluation Parameters for Fractionated High-Dose Rate GYN Brachytherapy.
- Creator
- Shojaei, Marjan, Pella, Silvia, Leventouri, Theodora, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
Intracavitary high-dose-rate brachytherapy (HDRBT) is a treatment option for endometrial cancer, depending on the cancer stage. Because of the steep high dose gradient of HDRBT, very small differences in the treatment plans, surrounding organ’s anatomy, or procedures during the treatment could potentially cause significant dose variation to the tumor, as well as organs at risks (OAR) nearby the treatment area, which could result in unwanted radiobiological side effects. In this retrospective...
Show moreIntracavitary high-dose-rate brachytherapy (HDRBT) is a treatment option for endometrial cancer, depending on the cancer stage. Because of the steep high dose gradient of HDRBT, very small differences in the treatment plans, surrounding organ’s anatomy, or procedures during the treatment could potentially cause significant dose variation to the tumor, as well as organs at risks (OAR) nearby the treatment area, which could result in unwanted radiobiological side effects. In this retrospective study, the radiobiological plan evaluation parameters Equivalent Uniform Dose (EUD), Normal Tissue Complication Probability (NTCP) are used as assessment tools to evaluate HDRBT plans. Furthermore, gynecological applicator position in the coordinate system, and possible dose variations to the tumor and critical organs from the initial fraction in comparison with subsequent fractions over the entire multi fractionated treatment are studied. The evaluations were performed for 118 HDR treatment plans for 30 patients by registration of the subsequent treatment plans into the initial CT-image guided plan. Dose fractionation regimens varied from 4Gy to 7Gy per fraction, 1 or 2 fractions per week, depending on the cancer stage. Our results demonstrate no significant radiobiological impacts on organs at risks (OAR). In addition, the results of the applicator positions’ study indicate that improvement of immobilization and localization devices are recommended.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00013144
- Subject Headings
- Brachytherapy, Radiobiology, Radiation dosimetry--Evaluation
- Format
- Document (PDF)
- Title
- Dose Validation for Partial Accelerated Breast Irradiation treated with the SAVI Applicator.
- Creator
- Pinder, Janeil K., Pella, Silvia, Leventouri, Theodora, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
The purpose of this study is to verify and validate the dose at various points of interest in accelerated partial breast irradiation (APBI) treated with the Strut Adjusted Volume Implant (SAVI) applicator using Thermoluminescent Dosimeters (TLDs). A set of CT images were selected from a patient’s data who had received APBI using the SAVI applicator. The images were used to make 3D models. TLDs were calibrated for Brachytherapy. Various points of interest were marked out and slots were carved...
Show moreThe purpose of this study is to verify and validate the dose at various points of interest in accelerated partial breast irradiation (APBI) treated with the Strut Adjusted Volume Implant (SAVI) applicator using Thermoluminescent Dosimeters (TLDs). A set of CT images were selected from a patient’s data who had received APBI using the SAVI applicator. The images were used to make 3D models. TLDs were calibrated for Brachytherapy. Various points of interest were marked out and slots were carved in the 3D models to fit the TLDs. CT scans were taken of the 3D models with expanded SAVI applicator inserted. A plan was made following B-39 protocol. The TLDs were read and the absorbed doses were calculated and compared to the delivered doses. The results of this study show that the overall average reading of the TLDs is within expected value. The TPS shows overestimated dose calculations for brachytherapy.
Show less - Date Issued
- 2017
- PURL
- http://purl.flvc.org/fau/fd/FA00005942
- Subject Headings
- Dissertations, Academic -- Florida Atlantic University, Thermoluminescence dosimetry., Brachytherapy., Radiotherapy Dosage., Breast--Cancer--Radiotherapy.
- Format
- Document (PDF)
- Title
- MCNP5 Monte Carlo based dosimetry for the Nucletron Iridium-192 high dose-rate brachytherapy source with tissue heterogeneity corrections.
- Creator
- Herrera, Ramses, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
A Monte Carlo model has been developed using MCNP5 to simulate the Nucletron Ir-192 HDR source in order to investigate the influence of tissue heterogeneities on dose calculations compared to the dose in homogeneous water media, as it is typically calculated by brachytherapy Treatment Planning Systems (TPS). Validity of the simulation was verified in water medium in comparison with peer reviewed results using the dosimetric parameters recommended by AAPM, Task Group-43. The dose-rates in...
Show moreA Monte Carlo model has been developed using MCNP5 to simulate the Nucletron Ir-192 HDR source in order to investigate the influence of tissue heterogeneities on dose calculations compared to the dose in homogeneous water media, as it is typically calculated by brachytherapy Treatment Planning Systems (TPS). Validity of the simulation was verified in water medium in comparison with peer reviewed results using the dosimetric parameters recommended by AAPM, Task Group-43. The dose-rates in simulated prostate, bladder and rectum were compared to those obtained in the homogeneous water phantom. Based on the resulting dose differences, it is inferred that TPS algorithms for brachytherapy dose calculations overestimate the dose to tissues like prostate and bladder by up to 49%. A clinically relevant dose underestimation of 5.5% to the rectum was also found. We recommend that further investigation using actual patient CT data as input to the Monte Carlo simulation be performed.
Show less - Date Issued
- 2012
- PURL
- http://purl.flvc.org/FAU/3355564
- Subject Headings
- Medical physics, Iridium, Therapeutic use, Imaging systems in medicine, Radioisotope brachytherapy
- Format
- Document (PDF)
- Title
- The importance of immobilization and localization of gynecological applicators in high dose rate brachytherapy treatments.
- Creator
- Hyvärinen, Mikko, Pella, Silvia, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
Intracavitary high dose rate (HDR) brachytherapy is a form of radiation therapy generally in which a post-surgical tissue margin is treated. The dose gradient of HDR brachytherapy is very steep, and thus small displacements of the applicator, even as small as 1 mm, could potentially cause significant variations of dose which could result in undesired side effects such as overdose of a critical organ. In this retrospective dosimetric study, the variation of dose due to various small range...
Show moreIntracavitary high dose rate (HDR) brachytherapy is a form of radiation therapy generally in which a post-surgical tissue margin is treated. The dose gradient of HDR brachytherapy is very steep, and thus small displacements of the applicator, even as small as 1 mm, could potentially cause significant variations of dose which could result in undesired side effects such as overdose of a critical organ. In this retrospective dosimetric study, the variation of dose due to various small range motions of gynecological applicators is investigated. The results show that the implementation of additional immobilization and localization devices along with other safety measures needs to be further investigated.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004446
- Subject Headings
- Artificial intelligence -- Medical applications, Cancer -- Intraoperative radiotherapy, Generative organs, Female -- Cancer -- Treatment, Imaging systems in medicine, Medical physics, Radiosotope brachytherapy
- Format
- Document (PDF)