Current Search: Autonomous robots (x)
View All Items
- Title
- An active-vision-based method for autonomous navigation.
- Creator
- Ergen, Erkut Erhan., Florida Atlantic University, Raviv, Daniel
- Abstract/Description
-
This research explores the existing active-vision-based algorithms employed in today's autonomous navigation systems. Some of the popular range finding algorithms are introduced and presented with examples. In light of the existing methods, an active-vision-based method, which extracts visual cues from a sequence of 2D images, is proposed for autonomous navigation. The proposed algorithm merges the method titled 'Visual Threat Cues (VTCs) for Autonomous Navigation' developed by Kundur (1),...
Show moreThis research explores the existing active-vision-based algorithms employed in today's autonomous navigation systems. Some of the popular range finding algorithms are introduced and presented with examples. In light of the existing methods, an active-vision-based method, which extracts visual cues from a sequence of 2D images, is proposed for autonomous navigation. The proposed algorithm merges the method titled 'Visual Threat Cues (VTCs) for Autonomous Navigation' developed by Kundur (1), with the structured-light-based methods. By combining these methods, a more practical and a simpler method for indoors autonomous navigation tasks is developed. A textured-pattern, which is projected onto the object surface by a slide projector, is used as the structured-light source, and the proposed approach is independent of the textured-pattern used. Several experiments are performed with the autonomous robot LOOMY to test the proposed algorithm, and the results are very promising.
Show less - Date Issued
- 1997
- PURL
- http://purl.flvc.org/fcla/dt/15425
- Subject Headings
- Autonomous robots, Automotive sensors
- Format
- Document (PDF)
- Title
- LOOMY: A platform for vision-based autonomous driving.
- Creator
- Kelly, Thomas Joseph., Florida Atlantic University, Raviv, Daniel, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
This thesis describes the conceptualization, design and implementation of a low-cost vision-based autonomous vehicle named LOOMY. A golf cart has been ouffitted with a personal computer, a fixed foward-looking camera, and the necessary actuators to facilitate driving operations. Steering, braking, and speed control actuators are being driven in open-loop with no sort of local feedback. The only source of feedback to the system is through the image sequence obtained from the camera. The images...
Show moreThis thesis describes the conceptualization, design and implementation of a low-cost vision-based autonomous vehicle named LOOMY. A golf cart has been ouffitted with a personal computer, a fixed foward-looking camera, and the necessary actuators to facilitate driving operations. Steering, braking, and speed control actuators are being driven in open-loop with no sort of local feedback. The only source of feedback to the system is through the image sequence obtained from the camera. The images are processed and the relative information is extracted and applied to the navigation task. The implemented task is to follow another vehicle, tracing its actions while avoiding collisions using the visual looming cue.
Show less - Date Issued
- 1998
- PURL
- http://purl.flvc.org/fcla/dt/15610
- Subject Headings
- Automotive sensors, Autonomous robots
- Format
- Document (PDF)
- Title
- Self-Contained Soft Robotic Jellyfish with Water-Filled Bending Actuators and Positional Feedback Control.
- Creator
- Frame, Jennifer, Engeberg, Erik, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
This thesis concerns the design, construction, control, and testing of a novel self-contained soft robotic vehicle; the JenniFish is a free-swimming jellyfish-like soft robot that could be adapted for a variety of uses, including: low frequency, low power sensing applications; swarm robotics; a STEM classroom learning resource; etc. The final vehicle design contains eight PneuNet-type actuators radially situated around a 3D printed electronics canister. These propel the vehicle when inflated...
Show moreThis thesis concerns the design, construction, control, and testing of a novel self-contained soft robotic vehicle; the JenniFish is a free-swimming jellyfish-like soft robot that could be adapted for a variety of uses, including: low frequency, low power sensing applications; swarm robotics; a STEM classroom learning resource; etc. The final vehicle design contains eight PneuNet-type actuators radially situated around a 3D printed electronics canister. These propel the vehicle when inflated with water from its surroundings by impeller pumps; since the actuators are connected in two neighboring groups of four, the JenniFish has bi-directional movement capabilities. Imbedded resistive flex sensors provide actuator position to the vehicle’s PD controller. Other onboard sensors include an IMU and an external temperature sensor. Quantitative constrained load cell tests, both in-line and bending, as well as qualitative free-swimming video tests were conducted to find baseline vehicle performance capabilities. Collected metrics compare well with existing robotic jellyfish.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004656, http://purl.flvc.org/fau/fd/FA00004656
- Subject Headings
- Adaptive control systems, Artificial intelligence, Autonomous robots, Computational intelligence, Robotics
- Format
- Document (PDF)
- Title
- Development of a morphing autonomous underwater vehicle for path and station keeping in complex current environments.
- Creator
- Meneses, Andrea M., Su, Tsung-Chow, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
This thesis explores the feasibility of using morphing rudders in autonomous underwater vehicles (AUVs) to improve their performance in complex current environments. The modeling vehicle in this work corresponds to the Florida Atlantic University's Ocean EXplorer (OEX) AUV. The AUV nonlinear dynamic model is limited to the horizontal plane and includes the effect of ocean current. The main contribution of this thesis is the use of active rudders to successfully achieve path keeping and...
Show moreThis thesis explores the feasibility of using morphing rudders in autonomous underwater vehicles (AUVs) to improve their performance in complex current environments. The modeling vehicle in this work corresponds to the Florida Atlantic University's Ocean EXplorer (OEX) AUV. The AUV nonlinear dynamic model is limited to the horizontal plane and includes the effect of ocean current. The main contribution of this thesis is the use of active rudders to successfully achieve path keeping and station keeping of an AUV under the influence of unsteady current force. A constant ocean current superimposed with a sinusoidal component is considered. The vehicle's response is analyzed for a range of current frequencies.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004137, http://purl.flvc.org/fau/fd/FA00004137
- Subject Headings
- Autonomous robots -- Design and construction, Fracture mechanics, Manipulation (Mechanism) -- Control, Remote submersibles -- Design and construction, Vehicles, Remotely piloted -- Design and construction
- Format
- Document (PDF)
- Title
- Design of an Aquatic Quadcopter with Optical Wireless Communications.
- Creator
- Haller, Patterson, Abtahi, Homayoon, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
With a focus on dynamics and control, an aquatic quadcopter with optical wireless communications is modeled, designed, constructed, and tested. Optical transmitter and receiver circuitry is designed and discussed. By utilization of the small angle assumption, the nonlinear dynamics of quadcopter movement are linearized around an equilibrium state of zero motion. The set of equations are then tentatively employed beyond limit of the small angle assumption, as this work represents an initial...
Show moreWith a focus on dynamics and control, an aquatic quadcopter with optical wireless communications is modeled, designed, constructed, and tested. Optical transmitter and receiver circuitry is designed and discussed. By utilization of the small angle assumption, the nonlinear dynamics of quadcopter movement are linearized around an equilibrium state of zero motion. The set of equations are then tentatively employed beyond limit of the small angle assumption, as this work represents an initial explorative study. Specific constraints are enforced on the thrust output of all four rotors to reduce the multiple-input multiple-output quadcopter dynamics to a set of single-input single-output systems. Root locus and step response plots are used to analyze the roll and pitch rotations of the quadcopter. Ultimately a proportional integral derivative based control system is designed to control the pitch and roll. The vehicle’s yaw rate is similarly studied to develop a proportional controller. The prototype is then implemented via an I2C network of Arduino microcontrollers and supporting hardware.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004786, http://purl.flvc.org/fau/fd/FA00004786
- Subject Headings
- Autonomous robots--Design and construction., Embedded computer systems--Design and construction., Wireless communication systems., Artificial intelligence., Optical pattern recognition., Computer vision.
- Format
- Document (PDF)