Current Search: Artificial intelligence (x)
View All Items
Pages
- Title
- SCHEMATIC: AN EXPERIMENT IN MACHINE LEARNING USING CONCEPTUAL GRAPHS.
- Creator
- HALTERMAN, RICHARD L., Florida Atlantic University
- Abstract/Description
-
Conceptual graphs form the basis of a powerful representation language for artificial intelligence research. SCHEMATIC is a system that uses a subset of conceptual graph theory in acquiring knowledge about a given domain. SCHEMATIC exhibits two types of learning. It will passively absorb information as imparted by the teacher, and it also has an active learning mode that, based on its current picture of the domain, aggressively queries the teacher for more information. The knowledge base,...
Show moreConceptual graphs form the basis of a powerful representation language for artificial intelligence research. SCHEMATIC is a system that uses a subset of conceptual graph theory in acquiring knowledge about a given domain. SCHEMATIC exhibits two types of learning. It will passively absorb information as imparted by the teacher, and it also has an active learning mode that, based on its current picture of the domain, aggressively queries the teacher for more information. The knowledge base, including the concept type hierarchy, the relation list, canonical forms, and the current domain, are dynamically maintained. Teacher interaction is handled exclusively with conceptual graphs. Action concepts are treated differently by SCHEMATIC, in that, once defined, they execute procedures that alter the domain.
Show less - Date Issued
- 1987
- PURL
- http://purl.flvc.org/fcla/dt/14421
- Subject Headings
- Machine learning, Artificial intelligence
- Format
- Document (PDF)
- Title
- ASSESSING METHODS AND TOOLS TO IMPROVE REPORTING, INCREASE TRANSPARENCY, AND REDUCE FAILURES IN MACHINE LEARNING APPLICATIONS IN HEALTHCARE.
- Creator
- Garbin, Christian, Marques, Oge, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
Artificial intelligence (AI) had a few false starts – the AI winters of the 1970s and 1980s. We are now in what looks like an AI summer. There are many useful applications of AI in the field. But there are still unfulfilled promises and outright failures. From self-driving cars that work only in constrained cases, to medical image analysis products that would replace radiologists but never did, we still struggle to translate successful research into successful real-world applications. The...
Show moreArtificial intelligence (AI) had a few false starts – the AI winters of the 1970s and 1980s. We are now in what looks like an AI summer. There are many useful applications of AI in the field. But there are still unfulfilled promises and outright failures. From self-driving cars that work only in constrained cases, to medical image analysis products that would replace radiologists but never did, we still struggle to translate successful research into successful real-world applications. The software engineering community has accumulated a large body of knowledge over the decades on how to develop, release, and maintain products. AI products, being software products, benefit from some of that accumulated knowledge, but not all of it. AI products diverge from traditional software products in fundamental ways: their main component is not a specific piece of code, written for a specific purpose, but a generic piece of code, a model, customized by a training process driven by hyperparameters and a dataset. Datasets are usually large and models are opaque. We cannot directly inspect them as we can inspect the code of traditional software products. We need other methods to detect failures in AI products.
Show less - Date Issued
- 2020
- PURL
- http://purl.flvc.org/fau/fd/FA00013580
- Subject Headings
- Machine learning, Artificial intelligence, Healthcare
- Format
- Document (PDF)
- Title
- KINOVA ROBOTIC ARM MANIPULATION WITH PYTHON PROGRAMMING.
- Creator
- Veit, Cameron, Zhong, Xiangnan, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
As artificial intelligence (AI), such as reinforcement learning (RL), has continued to grow, the introduction of AI for use in robotic arms in order to have them autonomously complete tasks has become an increasingly popular topic. Robotic arms have recently had a drastic spike in innovation, with new robotic arms being developed for a variety of tasks both menial and complicated. One robotic arm recently developed for everyday use in close proximity to the user is the Kinova Gen 3 Lite, but...
Show moreAs artificial intelligence (AI), such as reinforcement learning (RL), has continued to grow, the introduction of AI for use in robotic arms in order to have them autonomously complete tasks has become an increasingly popular topic. Robotic arms have recently had a drastic spike in innovation, with new robotic arms being developed for a variety of tasks both menial and complicated. One robotic arm recently developed for everyday use in close proximity to the user is the Kinova Gen 3 Lite, but limited formal research has been conducted about controlling this robotic arm both with an AI and in general. Therefore, this thesis covers the implementation of Python programs in controlling the robotic arm physically as well as the use of a simulation to train an RL based AI compatible with the Kinova Gen 3 Lite. Additionally, the purpose of this research is to identify and solve the difficulties in the physical instance and the simulation as well as the impact of the learning parameters on the robotic arm AI. Similarly, the issues in connecting two Kinova Gen 3 Lites to one computer at once are also examined. This thesis goes into detail about the goal of the Python programs created to move the physical robotic arm as well as the overall setup and goal of the robotic arm simulation for the RL method. In particular, the Python programs for the physical robotic arm pick up the object and place it at a different location, identifying a method to prevent the gripper from crushing an object without a tactile sensor in the process. The thesis also covers the effect of various learning parameters on the accuracy and steps to goal curves of an RL method designed to make a Kinova Gen 3 Lite grab an object in a simulation. In particular, a neural network implementation of RL method with one of the learning parameters changed in comparison to the optimal learning parameters. The neural network is trained using Python Anaconda to control a Kinova Gen 3 Lite robotic arm model for a simulation made in the Unity compiler.
Show less - Date Issued
- 2022
- PURL
- http://purl.flvc.org/fau/fd/FA00014022
- Subject Headings
- Robotics, Artificial intelligence, Reinforcement learning
- Format
- Document (PDF)
- Title
- INTELLIGENT OPERATION OF ROBOTIC ARMS BASED ON TURTLEBOT3 MOBILE ROBOTS.
- Creator
- Veit, Connor, Zhong, Xiangnan, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
As technology progresses, tasks involving object manipulation that were once conducted by humans are now being accomplished through robots. Specifically, robots carry out these goals through the utilization of different forms of artificial intelligence, including deep learning via a convolutional neural network. One robot made to accomplish this purpose is the ROS controlled TurtleBot3 Waffle Pi with an OpenMANIPULATOR-X robotic arm. This type of TurtleBot3 was developed with the express...
Show moreAs technology progresses, tasks involving object manipulation that were once conducted by humans are now being accomplished through robots. Specifically, robots carry out these goals through the utilization of different forms of artificial intelligence, including deep learning via a convolutional neural network. One robot made to accomplish this purpose is the ROS controlled TurtleBot3 Waffle Pi with an OpenMANIPULATOR-X robotic arm. This type of TurtleBot3 was developed with the express purpose of education and research but may not be limited to those two usages. Based on the current design of this classification of TurtleBot3, it may have multiple applications outside the testing environment, granting it further uses in a variety of tasks. The TurtleBot3 is easy to setup to fulfill the purposes for which the TurtleBot3 Waffle Pi was designed, and the exploration into further uses would allow for the discovery of alternatives to some tasks that normally require more work. For that reason, this thesis was conducted to determine the various uses of the TurtleBot3 with a robotic arm and if this robot can be used outside of a testing environment for various real-world tasks.
Show less - Date Issued
- 2022
- PURL
- http://purl.flvc.org/fau/fd/FA00014026
- Subject Headings
- Robotics, Artificial intelligence, Mobile robots
- Format
- Document (PDF)
- Title
- ARTIFICIAL INTELLIGENCE (AI) ENABLES SENSORIMOTOR INTEGRATION FOR PROSTHETIC HAND DEXTERITY.
- Creator
- Abd, Moaed A., Engeberg, Erik D., Florida Atlantic University, Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science
- Abstract/Description
-
Hand amputation is a devastating feeling for amputees, and it is lifestyle changing since it is challenging to perform the basic life activities with amputation. Hand amputation means interrupting the closed loop between sensory feedback and motor control. The absence of sensory feedback requires a significant cognitive effort from the amputee to perform basic daily activities with prosthetic hand. Loss of tactile sensations is a major roadblock preventing amputees from multitasking or using...
Show moreHand amputation is a devastating feeling for amputees, and it is lifestyle changing since it is challenging to perform the basic life activities with amputation. Hand amputation means interrupting the closed loop between sensory feedback and motor control. The absence of sensory feedback requires a significant cognitive effort from the amputee to perform basic daily activities with prosthetic hand. Loss of tactile sensations is a major roadblock preventing amputees from multitasking or using the full dexterity of their prosthetic hands. One of the most significant features lacking from commercial prosthetic hands is sensory feedback, according to amputees. Many amputees abandoned their prosthetic devices due to the lack of tactile feedback. In the field of prosthetics, restoring sensory feedback is the most challenging task due to the complexity of integration between the prosthetic and the peripheral nervous system. A prosthetic hand with sensory feedback that imitates the intact hand would improve the lives of millions of amputees worldwide by inducing the prosthetic hand to be a part of the body image and significant impact the control of the prosthetic. To restore the sensory feedback and improve the dexterity for upper limb amputee, multiple components needed to be integrated together to provide the sensory feedback. Tactile sensors are the first components that needed to be integrated into the sensorimotor loop. In this research two tactile sensors were integrated in the sensory feedback loop. The first tactile sensor is BioTac which is a commercially available sensor. The first novel contribution with BioTac is the development of an ANN classifier to detect the direction a grasped object slips in a dexterous robotic hand in real time, and the second novel aspect of this study is the use of slip direction detection for adaptive robotic grasp reflexes. The second tactile sensor is the liquid metal sensor (LMS), this sensor was developed entirely in our lab (BioRobotics lab). The novel contribution for LMS is to detect and prevent slip in real time application, and to recognize different surface features and different sliding speeds.
Show less - Date Issued
- 2022
- PURL
- http://purl.flvc.org/fau/fd/FA00013875
- Subject Headings
- Artificial intelligence, Haptic devices, Tactile sensors, Sensorimotor integration, Artificial hands
- Format
- Document (PDF)
- Title
- CONNECTED MULTI-DOMAIN AUTONOMY AND ARTIFICIAL INTELLIGENCE: AUTONOMOUS LOCALIZATION, NETWORKING, AND DATA CONFORMITY EVALUATION.
- Creator
- Tountas, Konstantinos, Pados, Dimitris, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
The objective of this dissertation work is the development of a solid theoretical and algorithmic framework for three of the most important aspects of autonomous/artificialintelligence (AI) systems, namely data quality assurance, localization, and communications. In the era of AI and machine learning (ML), data reign supreme. During learning tasks, we need to ensure that the training data set is correct and complete. During operation, faulty data need to be discovered and dealt with to...
Show moreThe objective of this dissertation work is the development of a solid theoretical and algorithmic framework for three of the most important aspects of autonomous/artificialintelligence (AI) systems, namely data quality assurance, localization, and communications. In the era of AI and machine learning (ML), data reign supreme. During learning tasks, we need to ensure that the training data set is correct and complete. During operation, faulty data need to be discovered and dealt with to protect from -potentially catastrophic- system failures. With our research in data quality assurance, we develop new mathematical theory and algorithms for outlier-resistant decomposition of high-dimensional matrices (tensors) based on L1-norm principal-component analysis (PCA). L1-norm PCA has been proven to be resistant to irregular data-points and will drive critical real-world AI learning and autonomous systems operations in the future. At the same time, one of the most important tasks of autonomous systems is self-localization. In GPS-deprived environments, localization becomes a fundamental technical problem. State-of-the-art solutions frequently utilize power-hungry or expensive architectures, making them difficult to deploy. In this dissertation work, we develop and implement a robust, variable-precision localization technique for autonomous systems based on the direction-of-arrival (DoA) estimation theory, which is cost and power-efficient. Finally, communication between autonomous systems is paramount for mission success in many applications. In the era of 5G and beyond, smart spectrum utilization is key.. In this work, we develop physical (PHY) and medium-access-control (MAC) layer techniques that autonomously optimize spectrum usage and minimizes intra and internetwork interference.
Show less - Date Issued
- 2020
- PURL
- http://purl.flvc.org/fau/fd/FA00013617
- Subject Headings
- Artificial intelligence, Machine learning, Tensor algebra
- Format
- Document (PDF)
- Title
- AN APPROACH USING AFFECTIVE COMPUTING TO PREDICT INTERACTION QUALITY FROM CONVERSATIONS.
- Creator
- Matic, Richard N., Maniaci, Michael, Florida Atlantic University, Department of Psychology, Charles E. Schmidt College of Science
- Abstract/Description
-
John Gottman’s mathematical models have been shown to accurately predict a couple’s style of interaction using only the sentiments found in the couple’s conversations. I derived speaker sentiment slopes from 151 recorded dyadic audio conversations from the IEMOCAP dataset through an IBM Watson emotion recognition pipeline and assessed its accuracy as input for a Gottman model by comparing the cumulative speaker sentiment slope for each conversation produced from predicted emotion codes to...
Show moreJohn Gottman’s mathematical models have been shown to accurately predict a couple’s style of interaction using only the sentiments found in the couple’s conversations. I derived speaker sentiment slopes from 151 recorded dyadic audio conversations from the IEMOCAP dataset through an IBM Watson emotion recognition pipeline and assessed its accuracy as input for a Gottman model by comparing the cumulative speaker sentiment slope for each conversation produced from predicted emotion codes to that produced from groundtruth codes provided by IEMOCAP. Watson produced sentiment slopes strongly correlated with those produced by groundtruth emotion codes. An abbreviated pipeline was also assessed consisting just of the Watson textual emotion recognition model using IEMOCAP’s human transcriptions as input. It produced predicted sentiment slopes very strongly correlated with those produced by groundtruth. The research demonstrated that artificial intelligence has potential to be used to predict interaction quality from short samples of conversational data.
Show less - Date Issued
- 2022
- PURL
- http://purl.flvc.org/fau/fd/FA00014023
- Subject Headings
- Affective Computing, Emotion recognition, Artificial intelligence
- Format
- Document (PDF)
- Title
- Self-Contained Soft Robotic Jellyfish with Water-Filled Bending Actuators and Positional Feedback Control.
- Creator
- Frame, Jennifer, Engeberg, Erik, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
This thesis concerns the design, construction, control, and testing of a novel self-contained soft robotic vehicle; the JenniFish is a free-swimming jellyfish-like soft robot that could be adapted for a variety of uses, including: low frequency, low power sensing applications; swarm robotics; a STEM classroom learning resource; etc. The final vehicle design contains eight PneuNet-type actuators radially situated around a 3D printed electronics canister. These propel the vehicle when inflated...
Show moreThis thesis concerns the design, construction, control, and testing of a novel self-contained soft robotic vehicle; the JenniFish is a free-swimming jellyfish-like soft robot that could be adapted for a variety of uses, including: low frequency, low power sensing applications; swarm robotics; a STEM classroom learning resource; etc. The final vehicle design contains eight PneuNet-type actuators radially situated around a 3D printed electronics canister. These propel the vehicle when inflated with water from its surroundings by impeller pumps; since the actuators are connected in two neighboring groups of four, the JenniFish has bi-directional movement capabilities. Imbedded resistive flex sensors provide actuator position to the vehicle’s PD controller. Other onboard sensors include an IMU and an external temperature sensor. Quantitative constrained load cell tests, both in-line and bending, as well as qualitative free-swimming video tests were conducted to find baseline vehicle performance capabilities. Collected metrics compare well with existing robotic jellyfish.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004656, http://purl.flvc.org/fau/fd/FA00004656
- Subject Headings
- Adaptive control systems, Artificial intelligence, Autonomous robots, Computational intelligence, Robotics
- Format
- Document (PDF)
- Title
- Analysis of machine learning algorithms on bioinformatics data of varying quality.
- Creator
- Shanab, Ahmad Abu, Khoshgoftaar, Taghi M., Florida Atlantic University, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
One of the main applications of machine learning in bioinformatics is the construction of classification models which can accurately classify new instances using information gained from previous instances. With the help of machine learning algorithms (such as supervised classification and gene selection) new meaningful knowledge can be extracted from bioinformatics datasets that can help in disease diagnosis and prognosis as well as in prescribing the right treatment for a disease. One...
Show moreOne of the main applications of machine learning in bioinformatics is the construction of classification models which can accurately classify new instances using information gained from previous instances. With the help of machine learning algorithms (such as supervised classification and gene selection) new meaningful knowledge can be extracted from bioinformatics datasets that can help in disease diagnosis and prognosis as well as in prescribing the right treatment for a disease. One particular challenge encountered when analyzing bioinformatics datasets is data noise, which refers to incorrect or missing values in datasets. Noise can be introduced as a result of experimental errors (e.g. faulty microarray chips, insufficient resolution, image corruption, and incorrect laboratory procedures), as well as other errors (errors during data processing, transfer, and/or mining). A special type of data noise called class noise, which occurs when an instance/example is mislabeled. Previous research showed that class noise has a detrimental impact on machine learning algorithms (e.g. worsened classification performance and unstable feature selection). In addition to data noise, gene expression datasets can suffer from the problems of high dimensionality (a very large feature space) and class imbalance (unequal distribution of instances between classes). As a result of these inherent problems, constructing accurate classification models becomes more challenging.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org./fau/fd/FA00004425, http://purl.flvc.org/fau/fd/FA00004425
- Subject Headings
- Artificial intelligence, Bioinformatics, Machine learning, System design, Theory of computation
- Format
- Document (PDF)
- Title
- Parallel Distributed Deep Learning on Cluster Computers.
- Creator
- Kennedy, Robert Kwan Lee, Khoshgoftaar, Taghi M., Florida Atlantic University, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Deep Learning is an increasingly important subdomain of arti cial intelligence. Deep Learning architectures, arti cial neural networks characterized by having both a large breadth of neurons and a large depth of layers, bene ts from training on Big Data. The size and complexity of the model combined with the size of the training data makes the training procedure very computationally and temporally expensive. Accelerating the training procedure of Deep Learning using cluster computers faces...
Show moreDeep Learning is an increasingly important subdomain of arti cial intelligence. Deep Learning architectures, arti cial neural networks characterized by having both a large breadth of neurons and a large depth of layers, bene ts from training on Big Data. The size and complexity of the model combined with the size of the training data makes the training procedure very computationally and temporally expensive. Accelerating the training procedure of Deep Learning using cluster computers faces many challenges ranging from distributed optimizers to the large communication overhead speci c to a system with o the shelf networking components. In this thesis, we present a novel synchronous data parallel distributed Deep Learning implementation on HPCC Systems, a cluster computer system. We discuss research that has been conducted on the distribution and parallelization of Deep Learning, as well as the concerns relating to cluster environments. Additionally, we provide case studies that evaluate and validate our implementation.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00013080
- Subject Headings
- Deep learning., Neural networks (Computer science)., Artificial intelligence., Machine learning.
- Format
- Document (PDF)
- Title
- Machine learning techniques for alleviating inherent difficulties in bioinformatics data.
- Creator
- Dittman, David, Khoshgoftaar, Taghi M., Florida Atlantic University, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
In response to the massive amounts of data that make up a large number of bioinformatics datasets, it has become increasingly necessary for researchers to use computers to aid them in their endeavors. With difficulties such as high dimensionality, class imbalance, noisy data, and difficult to learn class boundaries, being present within the data, bioinformatics datasets are a challenge to work with. One potential source of assistance is the domain of data mining and machine learning, a field...
Show moreIn response to the massive amounts of data that make up a large number of bioinformatics datasets, it has become increasingly necessary for researchers to use computers to aid them in their endeavors. With difficulties such as high dimensionality, class imbalance, noisy data, and difficult to learn class boundaries, being present within the data, bioinformatics datasets are a challenge to work with. One potential source of assistance is the domain of data mining and machine learning, a field which focuses on working with these large amounts of data and develops techniques to discover new trends and patterns that are hidden within the data and to increases the capability of researchers and practitioners to work with this data. Within this domain there are techniques designed to eliminate irrelevant or redundant features, balance the membership of the classes, handle errors found in the data, and build predictive models for future data.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004362, http://purl.flvc.org/fau/fd/FA00004362
- Subject Headings
- Artificial intelligence, Bioinformatics, Machine learning, System design, Theory of computation
- Format
- Document (PDF)
- Title
- Performance analysis of back propagation algorithm using artificial neural networks.
- Creator
- Malladi, Sasikanth., Florida Atlantic University, Pandya, Abhijit S., College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Backpropagation is a standard algorithm that is widely employed in many neural networks. Due to its wide acceptance and implementation, a standard benchmark for evaluating the performance of the algorithm is a handy tool for software design and development. The object of this thesis is to propose the use of the classic XOR problem for the performance evaluation of the backpropagation algorithm, with some variations on the input data sets. This thesis covers background work in this area and...
Show moreBackpropagation is a standard algorithm that is widely employed in many neural networks. Due to its wide acceptance and implementation, a standard benchmark for evaluating the performance of the algorithm is a handy tool for software design and development. The object of this thesis is to propose the use of the classic XOR problem for the performance evaluation of the backpropagation algorithm, with some variations on the input data sets. This thesis covers background work in this area and discusses the results obtained by other researchers. A series of test cases are then developed and run to perform the performance analysis of the backpropagation algorithm. As the performance of the networks depends strongly on the inputs, the effect of variation of the design parameters for the networks are evaluated and discussed.
Show less - Date Issued
- 2002
- PURL
- http://purl.flvc.org/fcla/dt/12961
- Subject Headings
- Back propagation (Artificial intelligence), Neural networks (Computer science)
- Format
- Document (PDF)
- Title
- OPTIMIZED DEEP LEARNING ARCHITECTURES AND TECHNIQUES FOR EDGE AI.
- Creator
- Zaniolo, Luiz, Marques, Oge, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
The recent rise of artificial intelligence (AI) using deep learning networks allowed the development of automatic solutions for many tasks that, in the past, were seen as impossible to be performed by a machine. However, deep learning models are getting larger, need significant processing power to train, and powerful machines to use it. As deep learning applications become ubiquitous, another trend is taking place: the growing use of edge devices. This dissertation addresses selected...
Show moreThe recent rise of artificial intelligence (AI) using deep learning networks allowed the development of automatic solutions for many tasks that, in the past, were seen as impossible to be performed by a machine. However, deep learning models are getting larger, need significant processing power to train, and powerful machines to use it. As deep learning applications become ubiquitous, another trend is taking place: the growing use of edge devices. This dissertation addresses selected technical issues associated with edge AI, proposes novel solutions to them, and demonstrates the effectiveness of the proposed approaches. The technical contributions of this dissertation include: (i) architectural optimizations to deep neural networks, particularly the use of patterned stride in convolutional neural networks used for image classification; (ii) use of weight quantization to reduce model size without hurting its accuracy; (iii) systematic evaluation of the impact of image imperfections on skin lesion classifiers' performance in the context of teledermatology; and (iv) a new approach for code prediction using natural language processing techniques, targeted at edge devices.
Show less - Date Issued
- 2021
- PURL
- http://purl.flvc.org/fau/fd/FA00013822
- Subject Headings
- Artificial intelligence, Deep learning (Machine learning), Neural networks (Computer science)
- Format
- Document (PDF)
- Title
- Using a cerebellar model arithmetic computer (CMAC) neural network to control an autonomous underwater vehicle.
- Creator
- Comoglio, Rick F., Florida Atlantic University, Pandya, Abhijit S.
- Abstract/Description
-
The design of an Autonomous Undersea Vehicle (AUV) control system is a significant challenge in-light of the highly uncertain nature of the ocean environment together with partially known nonlinear vehicle dynamics. This thesis describes a Neural Network architecture called Cerebellar Model Arithmetic Computer (CMAC). CMAC is used to control a model of an Autonomous Underwater Vehicle. The AUV model consists of two input parameters, the rudder and stern plane deflections, controlling six...
Show moreThe design of an Autonomous Undersea Vehicle (AUV) control system is a significant challenge in-light of the highly uncertain nature of the ocean environment together with partially known nonlinear vehicle dynamics. This thesis describes a Neural Network architecture called Cerebellar Model Arithmetic Computer (CMAC). CMAC is used to control a model of an Autonomous Underwater Vehicle. The AUV model consists of two input parameters, the rudder and stern plane deflections, controlling six output parameters; forward velocity, vertical velocity, pitch angle, side velocity, roll angle, and yaw angle. Properties of CMAC and results of computer simulations for identification and control of the AUV model are presented.
Show less - Date Issued
- 1991
- PURL
- http://purl.flvc.org/fcla/dt/14762
- Subject Headings
- Neural networks (Computer science), Artificial intelligence, Submersibles--Automatic control
- Format
- Document (PDF)
- Title
- Generating narratives: a pattern language.
- Creator
- Greene, Samuel., College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
In order to facilitate the development, discussion, and advancement of the relatively new subfield of Artificial Intelligence focused on generating narrative content, the author has developed a pattern language for generating narratives, along with a new categorization framework for narrative generation systems. An emphasis and focus is placed on generating the Fabula of the story (the ordered sequence of events that make up the plot). Approaches to narrative generation are classified into...
Show moreIn order to facilitate the development, discussion, and advancement of the relatively new subfield of Artificial Intelligence focused on generating narrative content, the author has developed a pattern language for generating narratives, along with a new categorization framework for narrative generation systems. An emphasis and focus is placed on generating the Fabula of the story (the ordered sequence of events that make up the plot). Approaches to narrative generation are classified into one of three categories, and a pattern is presented for each approach. Enhancement patterns that can be used in conjunction with one of the core patterns are also identified. In total, nine patterns are identified - three core narratology patterns, four Fabula patterns, and two extension patterns. These patterns will be very useful to software architects designing a new generation of narrative generation systems.
Show less - Date Issued
- 2012
- PURL
- http://purl.flvc.org/FAU/3355559
- Subject Headings
- Computational intelligence, Pattern recognition systems, Computer vision, Artificial intelligence, Image processing, Digital techiques
- Format
- Document (PDF)
- Title
- Intelligent Supervisory Switching Control of Unmanned Surface Vehicles.
- Creator
- Bertaska, Ivan Rodrigues, von Ellenrieder, Karl, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
novel approach to extend the decision-making capabilities of unmanned surface vehicles (USVs) is presented in this work. A multi-objective framework is described where separate controllers command different behaviors according to a desired trajectory. Three behaviors are examined – transiting, station-keeping and reversing. Given the desired trajectory, the vehicle is able to autonomously recognize which behavior best suits a portion of the trajectory. The USV uses a combination of a...
Show morenovel approach to extend the decision-making capabilities of unmanned surface vehicles (USVs) is presented in this work. A multi-objective framework is described where separate controllers command different behaviors according to a desired trajectory. Three behaviors are examined – transiting, station-keeping and reversing. Given the desired trajectory, the vehicle is able to autonomously recognize which behavior best suits a portion of the trajectory. The USV uses a combination of a supervisory switching control structure and a reinforcement learning algorithm to create a hybrid deliberative and reactive approach to switch between controllers and actions. Reinforcement learning provides a deliberative method to create a controller switching policy, while supervisory switching control acts reactively to instantaneous changes in the environment. Each action is restricted to one controller. Due to the nonlinear effects in these behaviors, two underactuated backstepping controllers and a fully-actuated backstepping controller are proposed for each transiting, reversing and station-keeping behavior, respectively, restricted to three degrees of freedom. Field experiments are presented to validate this system on the water with a physical USV platform under Sea State 1 conditions. Main outcomes of this work are that the proposed system provides better performance than a comparable gain-scheduled nonlinear controller in terms of an Integral of Absolute Error metric. Additionally, the deliberative component allows the system to identify dynamically infeasible trajectories and properly accommodate them.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004671, http://purl.flvc.org/fau/fd/FA00004671
- Subject Headings
- Adaptive control systems, Artificial intelligence, Engineering mathematics, Intelligent control systems, Mechatronics, Nonlinear control theory, Transportation engineering
- Format
- Document (PDF)
- Title
- An Ant Inspired Dynamic Traffic Assignment for VANETs: Early Notification of Traffic Congestion and Traffic Incidents.
- Creator
- Arellano, Wilmer, Mahgoub, Imad, Florida Atlantic University, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Vehicular Ad hoc NETworks (VANETs) are a subclass of Mobile Ad hoc NETworks and represent a relatively new and very active field of research. VANETs will enable in the near future applications that will dramatically improve roadway safety and traffic efficiency. There is a need to increase traffic efficiency as the gap between the traveled and the physical lane miles keeps increasing. The Dynamic Traffic Assignment problem tries to dynamically distribute vehicles efficiently on the road...
Show moreVehicular Ad hoc NETworks (VANETs) are a subclass of Mobile Ad hoc NETworks and represent a relatively new and very active field of research. VANETs will enable in the near future applications that will dramatically improve roadway safety and traffic efficiency. There is a need to increase traffic efficiency as the gap between the traveled and the physical lane miles keeps increasing. The Dynamic Traffic Assignment problem tries to dynamically distribute vehicles efficiently on the road network and in accordance with their origins and destinations. We present a novel dynamic decentralized and infrastructure-less algorithm to alleviate traffic congestions on road networks and to fill the void left by current algorithms which are either static, centralized, or require infrastructure. The algorithm follows an online approach that seeks stochastic user equilibrium and assigns traffic as it evolves in real time, without prior knowledge of the traffic demand or the schedule of the cars that will enter the road network in the future. The Reverse Online Algorithm for the Dynamic Traffic Assignment inspired by Ant Colony Optimization for VANETs follows a metaheuristic approach that uses reports from other vehicles to update the vehicle’s perceived view of the road network and change route if necessary. To alleviate the broadcast storm spontaneous clusters are created around traffic incidents and a threshold system based on the level of congestion is used to limit the number of incidents to be reported. Simulation results for the algorithm show a great improvement on travel time over routing based on shortest distance. As the VANET transceivers have a limited range, that would limit messages to reach at most 1,000 meters, we present a modified version of this algorithm that uses a rebroadcasting scheme. This rebroadcasting scheme has been successfully tested on roadways with segments of up to 4,000 meters. This is accomplished for the case of traffic flowing in a single direction on the roads. It is anticipated that future simulations will show further improvement when traffic in the other direction is introduced and vehicles travelling in that direction are allowed to use a store carry and forward mechanism.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004566, http://purl.flvc.org/fau/fd/FA00004566
- Subject Headings
- Vehicular ad hoc networks (Computer networks)--Technological innovations., Routing protocols (Computer network protocols), Artificial intelligence., Intelligent transportation systems., Intelligent control systems., Mobile computing., Computer algorithms., Combinatorial optimization.
- Format
- Document (PDF)
- Title
- Application of artificial neural networks to deduce robust forecast performance in technoeconomic contexts.
- Creator
- Dabbas, Mohammad A., Neelakanta, Perambur S., Florida Atlantic University, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
The focus of this research is concerned with performing forecasting in technoeconomic contexts using a set of certain novel artificial neural networks (ANNs). Relevant efforts in general, entail the task of quantitatively estimating the details about the likelihood of future events (or unknown outcomes/effects) based on past and current information on the observed events (or known causes). Commensurate with the scope and objectives of the research, the specific topics addressed are as follows...
Show moreThe focus of this research is concerned with performing forecasting in technoeconomic contexts using a set of certain novel artificial neural networks (ANNs). Relevant efforts in general, entail the task of quantitatively estimating the details about the likelihood of future events (or unknown outcomes/effects) based on past and current information on the observed events (or known causes). Commensurate with the scope and objectives of the research, the specific topics addressed are as follows: A review on various methods adopted in technoeconomic forecasting and identified are econometric projections that can be used for forecasting via artificial neural network (ANN)-based simulations Developing and testing a compatible version of ANN designed to support a dynamic sigmoidal (squashing) function that morphs to the stochastical trends of the ANN input. As such, the network architecture gets pruned for reduced complexity across the span of iterative training schedule leading to the realization of a constructive artificial neural-network (CANN). Formulating a training schedule on an ANN with sparsely-sampled data via sparsity removal with cardinality enhancement procedure (through Nyquist sampling) and invoking statistical bootstrapping technique of resampling applied on the cardinality-improved subset so as to obtain an enhanced number of pseudoreplicates required as an adequate ensemble for robust training of the test ANN: The training and prediction exercises on the test ANN corresponds to optimally elucidating output predictions in the context of the technoeconomics framework of the power generation considered Prescribing a cone-of-error to alleviate over- or under-predictions toward prudently interpreting the results obtained; and, squeezing the cone-of-error to get a final cone-of-forecast rendering the forecast estimation/inference to be more precise Designing an ANN-based fuzzy inference engine (FIE) to ascertain the ex ante forecast details based on sparse sets of ex post data gathered in technoeconomic contexts - Involved thereof a novel method of .fusing fuzzy considerations and data sparsity.Lastly, summarizing the results with essential conclusions and identifying possible research items for future efforts identified as open-questions.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004097, http://purl.flvc.org/fau/fd/FA00004097
- Subject Headings
- Artificial intelligence, Fuzzy systems, Long waves (Economics), Multisensor data fusion, Neural networks (Computer science) -- Mathematical models
- Format
- Document (PDF)
- Title
- An evaluation of machine learning algorithms for tweet sentiment analysis.
- Creator
- Prusa, Joseph D., Khoshgoftaar, Taghi M., Florida Atlantic University, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Sentiment analysis of tweets is an application of mining Twitter, and is growing in popularity as a means of determining public opinion. Machine learning algorithms are used to perform sentiment analysis; however, data quality issues such as high dimensionality, class imbalance or noise may negatively impact classifier performance. Machine learning techniques exist for targeting these problems, but have not been applied to this domain, or have not been studied in detail. In this thesis we...
Show moreSentiment analysis of tweets is an application of mining Twitter, and is growing in popularity as a means of determining public opinion. Machine learning algorithms are used to perform sentiment analysis; however, data quality issues such as high dimensionality, class imbalance or noise may negatively impact classifier performance. Machine learning techniques exist for targeting these problems, but have not been applied to this domain, or have not been studied in detail. In this thesis we discuss research that has been conducted on tweet sentiment classification, its accompanying data concerns, and methods of addressing these concerns. We test the impact of feature selection, data sampling and ensemble techniques in an effort to improve classifier performance. We also evaluate the combination of feature selection and ensemble techniques and examine the effects of high dimensionality when combining multiple types of features. Additionally, we provide strategies and insights for potential avenues of future work.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004460, http://purl.flvc.org/fau/fd/FA00004460
- Subject Headings
- Social media., Natural language processing (Computer science), Machine learning., Algorithms., Fuzzy expert systems., Artificial intelligence.
- Format
- Document (PDF)
- Title
- Analyzing the effect of fin morphology on the propulsive performance of an oscillating caudal fin using a robotic model.
- Creator
- Fischer, Tyler M., Curet, Oscar M., Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
A bio-inspired robotic underwater vessel was developed to test the effect of fin morphology on the propulsive performance of caudal fin. The robotic vessel, called The Bullet Fish, features a cylindrical body with a hemisphere at the forward section and a conical body at the stern. The vessel uses an oscillating caudal fin for thrust generation. The robotic vessel was tested in a recirculating flume for seven different caudal fins that range different bio-inspired forms and aspect ratios. The...
Show moreA bio-inspired robotic underwater vessel was developed to test the effect of fin morphology on the propulsive performance of caudal fin. The robotic vessel, called The Bullet Fish, features a cylindrical body with a hemisphere at the forward section and a conical body at the stern. The vessel uses an oscillating caudal fin for thrust generation. The robotic vessel was tested in a recirculating flume for seven different caudal fins that range different bio-inspired forms and aspect ratios. The experiments were performed at four different flow velocities and two flapping frequencies: 0.5 and 1.0 Hz. We found that for 1 Hz flapping frequency that in general as the aspect-ratio decreases both thrust production tends and power decrease resulting in a better propulsive efficiency for aspect ratios between 0.9 and 1.0. A less uniform trend was found for 0.5 Hz, where our data suggest multiple efficiency peaks. Additional experiments on the robotic model could help understand the propulsion aquatic locomotion and help the design of bio-inspired underwater vehicles.
Show less - Date Issued
- 2017
- PURL
- http://purl.flvc.org/fau/fd/FA00004944, http://purl.flvc.org/fau/fd/FA00004944
- Subject Headings
- Robotics., Robots--Kinematics., Artificial intelligence., Biomimetics., Bioinformatics., Stereotypes (Social psychology)
- Format
- Document (PDF)