Current Search: Antioxidants (x)
View All Items
- Title
- Characterization of Methionine Sulfoxide Reductases A and Bs from Tobacco Plant.
- Creator
- Ding, Di, Zhang, Xing-Hai, Florida Atlantic University
- Abstract/Description
-
One methionine sulfoxide reductase A (TMSRA) and two methionine sulfoxide reductase Bs (TMSRB 1 and TMSRB2) were isolated from tobacco plants. TMSRA showed specificity for the reduction of Met-(S)-SO and both TMSRBs were specific for the reduction of Met-(R)-SO. TMSRA was the cytosolic form and both TMSRBs were plastid forms based on sequence comparison and expression tests. TMSRA and TMSRB2 could use either thioredoxin (TRX) or dithiothreitol (DTT) as reducing system, while TMSRB 1 showed...
Show moreOne methionine sulfoxide reductase A (TMSRA) and two methionine sulfoxide reductase Bs (TMSRB 1 and TMSRB2) were isolated from tobacco plants. TMSRA showed specificity for the reduction of Met-(S)-SO and both TMSRBs were specific for the reduction of Met-(R)-SO. TMSRA was the cytosolic form and both TMSRBs were plastid forms based on sequence comparison and expression tests. TMSRA and TMSRB2 could use either thioredoxin (TRX) or dithiothreitol (DTT) as reducing system, while TMSRB 1 showed little activity with TRX but much more activity with DTT, which was similar to the mitochondrial MSRB2 from mammals. Ferredoxin (FD) is not the reducing system for Msrs, but might reflect the redox status in the cell and control the activity of Msrs indirectly.
Show less - Date Issued
- 2006
- PURL
- http://purl.flvc.org/fau/fd/FA00000746
- Subject Headings
- Proteins--Chemical modification, Genetic regulation, Plant genetic engineering, Antioxidants
- Format
- Document (PDF)
- Title
- Correlation between specific carcinogenic chemicals and specific mitotic defects and the restorative role of antioxidants.
- Creator
- Yates, Travis., Harriet L. Wilkes Honors College
- Abstract/Description
-
The progression of cancerous cells towards a more aggressive tumor can be linked to external elements called carcinogens. The goal of this project is to examine the correlation between exposure to specific carcinogens and an increase of mitotic defects. These defects can manifest as lagging chromosomes, multipolar spindles, and anaphase bridges. Some of these instabilities are associated with the formation of reactive oxygen species (ROS), which are known to damage DNA. The potential for...
Show moreThe progression of cancerous cells towards a more aggressive tumor can be linked to external elements called carcinogens. The goal of this project is to examine the correlation between exposure to specific carcinogens and an increase of mitotic defects. These defects can manifest as lagging chromosomes, multipolar spindles, and anaphase bridges. Some of these instabilities are associated with the formation of reactive oxygen species (ROS), which are known to damage DNA. The potential for damage to the genome can be averted via antioxidants. Using the oral cancer cell line UPCI:SCC103, we established a baseline for the mitotic defects in the absence and presence of various ROS-inducing carcinogens using DAPI-stained fixed cells examined by immunofluorescent microscopy, The cells were treated with varying concentrations of the antioxidants, Vitamin C, (Sb(B-Carotene, and Vitamin E. The reactive oxygen scavengers significantly reduced the number of mitotic defects. A possible link between the carcinogens and lagging chromosomes was established.
Show less - Date Issued
- 2009
- PURL
- http://purl.flvc.org/FAU/210007
- Subject Headings
- Cellular signal transduction, Genetic regulation, Antioxidants, Therapeutic use, Apoptosis, Molecular aspects, Cancer, Chemoprevention
- Format
- Document (PDF)
- Title
- Role of Methionine Sulfoxide Reductase (MsrA) on Aging and Oxidative Stress in Drosophila.
- Creator
- Foss, Katie, Binninger, David, Florida Atlantic University
- Abstract/Description
-
Oxidative damage is an inevitable consequence of aerobic respiration. Methionine sulfoxide reductases (Msr) are a group of enzymes that function to repair oxidized methionine residues in both free methionine and methionine in proteins. MsrA was the first of these enzymes to be discovered and is the most thoroughly studied. It is thought to play a role in both the aging process and probably several neurodegenerative diseases. I recently obtained a strain of Drosophila that was reported to have...
Show moreOxidative damage is an inevitable consequence of aerobic respiration. Methionine sulfoxide reductases (Msr) are a group of enzymes that function to repair oxidized methionine residues in both free methionine and methionine in proteins. MsrA was the first of these enzymes to be discovered and is the most thoroughly studied. It is thought to play a role in both the aging process and probably several neurodegenerative diseases. I recently obtained a strain of Drosophila that was reported to have a P-element transposon located within Exon 2 (part of the open reading frame) of the eip71cd gene, which is the Drosophila homolog of MsrA. Thus, the transposon insertion should disrupt expression of the msrA gene. I did a series of experiments to "jump out" the P-element in an effort to recover two types of isogenic strains. The first would be a null mutation of the MsrA gene created by deletion of flanking genomic DNA when the P-element excised from the chromosome. The second would be a precise excision of the P-element, which would restore the genetic locus to its original structure. This study looks at the effect of a null mutant of the MsrA gene on aging and resistance to oxidative stress.
Show less - Date Issued
- 2006
- PURL
- http://purl.flvc.org/fau/fd/FA00000772
- Subject Headings
- Genetic regulation, Oxidation-reduction reaction, Antioxidants, Oxygen--Physiological effect, Proteins--Chemical modification
- Format
- Document (PDF)
- Title
- Cells and cocktails: antioxidants rescue carcinogen induced mitotic defects in both chromosomally stable and unstable cells.
- Creator
- Griffin, Isabel Sloan., Harriet L. Wilkes Honors College
- Abstract/Description
-
Tumor cells are characterized by an increase in genomic instability, brought about by both chromosomal rearrangement and chromosomal instability. Both of these broad changes can be induced by exposure to carcinogens. During mitosis, cells can exhibit early and late lagging chromosomes, multipolar spindles or anaphase bridges, all of which contribute to genomic rearrantement. We have studied the link between exposure to carcinogen and prevalence of mitotic defect in both chromosomally stable...
Show moreTumor cells are characterized by an increase in genomic instability, brought about by both chromosomal rearrangement and chromosomal instability. Both of these broad changes can be induced by exposure to carcinogens. During mitosis, cells can exhibit early and late lagging chromosomes, multipolar spindles or anaphase bridges, all of which contribute to genomic rearrantement. We have studied the link between exposure to carcinogen and prevalence of mitotic defect in both chromosomally stable and unstable cell lines as well as ecamined the restorative effects of antioxidants in preventing mitotic defects. We have exposed MES-SA uterine cancer cells to vinyl chloride followed by exposure to an antioxidant : ascorbic acid, B-carotene, or lycopene. Treated cells were then scored for the prevalence of mitotic defects within the population and compared to controls. We have also investigated whether pre-treatment with the antioxidants will weaken the effects of carcinogen exposure in these cell lines.
Show less - Date Issued
- 2012
- PURL
- http://purl.flvc.org/FAU/3359304
- Subject Headings
- Cellular signal transduction, Cell differentiation, Medical genetics, Cancer, Genetic aspects, Antioxidants, Therapeutic use, Cancer, Chemoprevention, Apoptosis, Molecular aspects, Genetic regulation
- Format
- Document (PDF)
- Title
- Anticarcinogenic effects of genistein and anthocyanin extract in MCF-7 human breast cancer cells.
- Creator
- Stinson, Corine M., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
This study investigated potential apoptotic and anti-proliferative effects of the phytochemicals, genistein and anthocyanin extract, as single and combined treatments in MCF-7 human breast cancer cells. Cells were exposed to single and combined treatments with the phytochemiclas for 48 and 72 hours. Cell viability was assessed using the MTT bioassay. Apoptosis induction was assessed using acridine orange ethidium bromide and rhodamine 123 ethidium bromide fluorescence assays. Both singe and...
Show moreThis study investigated potential apoptotic and anti-proliferative effects of the phytochemicals, genistein and anthocyanin extract, as single and combined treatments in MCF-7 human breast cancer cells. Cells were exposed to single and combined treatments with the phytochemiclas for 48 and 72 hours. Cell viability was assessed using the MTT bioassay. Apoptosis induction was assessed using acridine orange ethidium bromide and rhodamine 123 ethidium bromide fluorescence assays. Both singe and combination treatments induced dose- and time-dependent apoptotic cell death in MCF-7 cells. The percentage of apoptosis was higher in combination treatments than single treatments with either phytochemical, although the difference was not statistically significant. The combination of genistein and anthocyanin extract peaked in efficacy at 48 hours of treatment, to exhibit significantly greater (P<. O5) dose- and time-dependent cell cytotoxicity than single treatments. This study reveals potential chemopreventive implications for the complementary effects of genistein and anthocyanin extract.
Show less - Date Issued
- 2011
- PURL
- http://purl.flvc.org/FAU/3320108
- Subject Headings
- Phytochemicals, Therapeutic use, Phytoestrogens, Physiological effect, Breast, Cancer, Risk factors, Breast, Cancer, Treatment, Probiotics, Cancer, Chemoprevention, Antioxidants, Therapeutic use
- Format
- Document (PDF)
- Title
- Anticancer ativities of topotecan-genistein combination in prostate cancer cells.
- Creator
- Hörmann, Vanessa P., Kumi-Diaka, James, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Prostate cancer is one of the leading causes of death in men aged 40-55. Genistein isoflavone (4', 5', 7-trihydroxyisoflavone) is a dietary phytochemical with demonstrated anti-tumor activities in a variety of cancers. Topotecan Hydrochloride (Hycamtin) is an FDA-approved chemotherapy drug, primarily used for secondary treatment of ovarian,cervical and small cell lung cancers. This study was to demonstrate the potential anticancer activities and synergy of topotecan-genistein combination in...
Show moreProstate cancer is one of the leading causes of death in men aged 40-55. Genistein isoflavone (4', 5', 7-trihydroxyisoflavone) is a dietary phytochemical with demonstrated anti-tumor activities in a variety of cancers. Topotecan Hydrochloride (Hycamtin) is an FDA-approved chemotherapy drug, primarily used for secondary treatment of ovarian,cervical and small cell lung cancers. This study was to demonstrate the potential anticancer activities and synergy of topotecan-genistein combination in LNCaP prostate cancer cells. The potential efficacy and mechanism of topotecan/genistein-induced cell death was investigated... Results: The overall data indicated that i) both genistein and topotecan induce cellular death in LNCaP cells, ii) topotecan-genistein combination was significantly more efficacious in reducing LNCaP cell viabiligy compared to either genistein or topotecan alone, iii) in all cases, cell death was primarily through apoptosis, via the activation of the intrinsic pathway, iv) ROS levels were increased and VEGF expression was diminished significantly with the topotecan-genistein combination treatment, v) genetic analysis of topotecan-genistein treatment groups showed changes in genetic expression levels in pathway specific apoptotic genes.... Conclusion: Treatments involving topotecan-genistein combination may prove to be an attractive alternative phytotherapy of adjuvant therapy for prostate cancer.
Show less - Date Issued
- 2012
- PURL
- http://purl.flvc.org/FAU/3358553
- Subject Headings
- Apoptosis, Molecular aspects, Prostate, Cancer, Adjuvant treatment, Prostate, Cancer, Molecular aspects, Phytochemicals, Physiological effect, Antioxidants, Therapeutic use, Topotecan, Therapeutic use, Genistein, Therapeutic use, Cancer, Chemotherapy
- Format
- Document (PDF)
- Title
- Taurine protection of PC12 cells against endoplasmic reticulum stress induced by oxidative stress.
- Creator
- Pan, Chunliu, Giraldo, Grace S., Prentice, Howard, Wu, Jang-Yen
- Date Issued
- 2010-08-24
- PURL
- http://purl.flvc.org/fcla/dt/3327276
- Subject Headings
- Oxidative Stress, Oxidative Stress --drug effects, Oxidative Stress --physiology, Antioxidants --pharmacology, Apoptosis Regulatory Proteins, Proto-Oncogene Proteins c-bcl-2, PC12 Cells --drug effects, Endoplasmic Reticulum --drug effects, Transcription Factor CHOP, Taurine
- Format
- Document (PDF)