Current Search: Alloys--Stress corrosion (x)
View All Items
- Title
- Environmental cracking susceptibility of austenitic stainless steel alloys in acidified seawater.
- Creator
- Poulassichidis, Antonios N., Florida Atlantic University, Lipka, Stephen M., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The stress corrosion cracking susceptibility of austenitic stainless steels SS304L, SS316L and SS904L was studied in an acidified seawater environment by slow strain rate testing at 24, 38 and 66$\sp\circ$C. Fractographic evidence of SCC susceptibility was obtained using scanning electron microscopy. The degree of susceptibility to SCC for each alloy in these environments is discussed based on the mechanical parameters, fractography and anodic polarization behavior. The results showed that...
Show moreThe stress corrosion cracking susceptibility of austenitic stainless steels SS304L, SS316L and SS904L was studied in an acidified seawater environment by slow strain rate testing at 24, 38 and 66$\sp\circ$C. Fractographic evidence of SCC susceptibility was obtained using scanning electron microscopy. The degree of susceptibility to SCC for each alloy in these environments is discussed based on the mechanical parameters, fractography and anodic polarization behavior. The results showed that SS904L performed better than SS304L and SS316L in the aforementioned environments.
Show less - Date Issued
- 1994
- PURL
- http://purl.flvc.org/fcla/dt/15071
- Subject Headings
- Stress corrosion, Seawater corrosion, Alloys--Stress corrosion
- Format
- Document (PDF)
- Title
- Effect of strain rate and temperature on the stress corrosion cracking tendency of engineering alloys in acidified seawater.
- Creator
- Kundalgurki, Srivatsa G., Florida Atlantic University, Lipka, Stephen M., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The stress corrosion cracking (SCC) tendencies of several engineering alloys were studied in an acidified seawater environment as a function of applied strain rate and electrolyte temperature. The selected alloys included austenitic stainless steels 304L, 316L, 904L and A-286 (an iron-based superalloy at two heat treatments yielding ultimate tensile strengths of 130 and 200 ksi), Inconel 718 (220 ksi ultimate tensile strength) and Hastelloys C-22 and C-276. The slow strain rate test technique...
Show moreThe stress corrosion cracking (SCC) tendencies of several engineering alloys were studied in an acidified seawater environment as a function of applied strain rate and electrolyte temperature. The selected alloys included austenitic stainless steels 304L, 316L, 904L and A-286 (an iron-based superalloy at two heat treatments yielding ultimate tensile strengths of 130 and 200 ksi), Inconel 718 (220 ksi ultimate tensile strength) and Hastelloys C-22 and C-276. The slow strain rate test technique was used to evaluate the SCC strain rate dependency of each alloy at extension rates of 4.7 x 10^-6, 4.7 x 10^-4 and 4.7 x 10^-3 mm/sec. The effect of electrolyte temperature was evaluated at 38C and 60C at a single extension rate of 4.7 x 10^-5 mm/sec. Control specimens were tested in a laboratory air environment at an extension rate of 4.7 x 10^-5 mm/sec. Various mechanical parameters of the specimens tested in the corrosive medium were compared with those of control specimens to quantify the degree of cracking. Fractographic evidence of SCC was obtained using scanning electron microscopy (SEM). An attempt was made to correlate SCC tendency with the alloy's passivation kinetics and microstructure. Atmospheric exposure testing was performed in a simulated space shuttle launch pad environment for selected alloys.
Show less - Date Issued
- 1992
- PURL
- http://purl.flvc.org/fcla/dt/14853
- Subject Headings
- Alloys--Stress corrosion, Stress corrosion, Sea-water corrosion
- Format
- Document (PDF)
- Title
- Stress corrosion cracking susceptibility of engineering alloys in acidified seawater.
- Creator
- Campaignolle, Xavier., Florida Atlantic University, Lipka, Stephen M.
- Abstract/Description
-
Experiments were conducted to determine the stress corrosion cracking (SCC) susceptibility of various corrosion-resistant alloys which included: 17-4 PH, INCONEL 718 and A286. These alloys were studied for different aging (heat) treatments. Slow strain rate tests (extension rate = 4.7 x 10^-5 mm/s) were performed on each alloy in four different environments; including air and natural seawater acidified with reagent grade hydrochloric acid to a pH of 0.1, 1 and 3. During the experiments, the...
Show moreExperiments were conducted to determine the stress corrosion cracking (SCC) susceptibility of various corrosion-resistant alloys which included: 17-4 PH, INCONEL 718 and A286. These alloys were studied for different aging (heat) treatments. Slow strain rate tests (extension rate = 4.7 x 10^-5 mm/s) were performed on each alloy in four different environments; including air and natural seawater acidified with reagent grade hydrochloric acid to a pH of 0.1, 1 and 3. During the experiments, the load versus time and the open circuit potential were monitored. Various parameters such as time-to-failure, energy-to-failure, maximum or failure stress and reduction-in-area were calculated in order to determine SCC susceptibility. Fractography using SEM was conducted to confirm whether any SCC occurred and, if so, to identify its mode (intergranular or transgranular). Limited potentiodynamic studies were also completed to evaluate the passive behavior of these alloys. The results are discussed in terms of the SCC susceptibility and the nature of the cracking. An attempt was also made to correlate alloy microstructure, slow strain rate test parameters and passivation behavior with SCC susceptibility.
Show less - Date Issued
- 1991
- PURL
- http://purl.flvc.org/fcla/dt/14756
- Subject Headings
- Stress corrosion, Alloys--Stress corrosion, Metals--Stress corrosion
- Format
- Document (PDF)