Current Search: Algebra, Linear (x)
View All Items
- Title
- Auslander-Reiten theory for systems of submodule embeddings.
- Creator
- Moore, Audrey., Charles E. Schmidt College of Science, Department of Mathematical Sciences
- Abstract/Description
-
In this dissertation, we will investigate aspects of Auslander-Reiten theory adapted to the setting of systems of submodule embeddings. Using this theory, we can compute Auslander-Reiten quivers of such categories, which among other information, yields valuable information about the indecomposable objects in such a category. A main result of the dissertation is an adaptation to this situation of the Auslander and Ringel-Tachikawa Theorem which states that for an artinian ring R of finite...
Show moreIn this dissertation, we will investigate aspects of Auslander-Reiten theory adapted to the setting of systems of submodule embeddings. Using this theory, we can compute Auslander-Reiten quivers of such categories, which among other information, yields valuable information about the indecomposable objects in such a category. A main result of the dissertation is an adaptation to this situation of the Auslander and Ringel-Tachikawa Theorem which states that for an artinian ring R of finite representation type, each R-module is a direct sum of finite-length indecomposable R-modules. In cases where this applies, the indecomposable objects obtained in the Auslander-Reiten quiver give the building blocks for the objects in the category. We also briefly discuss in which cases systems of submodule embeddings form a Frobenius category, and for a few examples explore pointwise Calabi-Yau dimension of such a category.
Show less - Date Issued
- 2009
- PURL
- http://purl.flvc.org/fcla/dt/210496
- Subject Headings
- Artin algebras, Rings (Algebra), Representation of algebras, Embeddings (Mathematics), Linear algebraic groups
- Format
- Document (PDF)
- Title
- Subgroups of bounded Abelian groups.
- Creator
- Petroro, Carla., Florida Atlantic University, Schmidmeier, Markus
- Abstract/Description
-
Birkhoff raised the question of how to determine "relative invariants of subgroups" of a given group. Let us consider pairs (A, B ) where B is a finite pn-bounded Abelian group and A is a subgroup of B. Maps between pairs (A, B) --> (A', B') are morphisms f : B --> B' such that f (A) --> A'. Classification of such pairs, up to isomorphism, is Birkhoff's famous problem. By the Krull-Remak-Schmidt theorem, an arbitrary pair (A, B) is a direct sum of indecomposable pairs, and the multiplicities...
Show moreBirkhoff raised the question of how to determine "relative invariants of subgroups" of a given group. Let us consider pairs (A, B ) where B is a finite pn-bounded Abelian group and A is a subgroup of B. Maps between pairs (A, B) --> (A', B') are morphisms f : B --> B' such that f (A) --> A'. Classification of such pairs, up to isomorphism, is Birkhoff's famous problem. By the Krull-Remak-Schmidt theorem, an arbitrary pair (A, B) is a direct sum of indecomposable pairs, and the multiplicities of the indecomposables are determined uniquely. The purpose of this thesis is to describe the decomposition of such pairs, (A, B), explicitly for n = 2 and n = 3. We describe explicitly how an indecomposable pair can possibly embed into a given pair (A, B). This construction gives rise to formulas for the multiplicity of an indecomposable in the direct sum decomposition of the pair (A, B). These decomposition numbers form a full set of relative invariant, as requested by Birkhoff.
Show less - Date Issued
- 2004
- PURL
- http://purl.flvc.org/fcla/dt/13118
- Subject Headings
- Abelian groups, Modules (Algebra), Indecomposable modules, Representations of groups, Algebras, Linear
- Format
- Document (PDF)
- Title
- Derivation of planar diffeomorphisms from Hamiltonians with a kick.
- Creator
- Barney, Zalmond C., Charles E. Schmidt College of Science, Department of Mathematical Sciences
- Abstract/Description
-
In this thesis we will discuss connections between Hamiltonian systems with a periodic kick and planar diffeomorphisms. After a brief overview of Hamiltonian theory we will focus, as an example, on derivations of the Hâenon map that can be obtained by considering kicked Hamiltonian systems. We will conclude with examples of Hâenon maps of interest.
- Date Issued
- 2011
- PURL
- http://purl.flvc.org/FAU/3329833
- Subject Headings
- Mathematical physics, Differential equations, Partial, Hamiltonian systems, Algebra, Linear, Chaotic behavior in systems
- Format
- Document (PDF)
- Title
- The existence of minimal logarithmic signatures for classical groups.
- Creator
- Singhi, Nikhil., Charles E. Schmidt College of Science, Department of Mathematical Sciences
- Abstract/Description
-
A logarithmic signature (LS) for a nite group G is an ordered tuple = [A1;A2; : : : ;An] of subsets Ai of G, such that every element g 2 G can be expressed uniquely as a product g = a1a2 : : : ; an, where ai 2 Ai. Logarithmic signatures were dened by Magliveras in the late 1970's for arbitrary nite groups in the context of cryptography. They were also studied for abelian groups by Hajos in the 1930's. The length of an LS is defined to be `() = Pn i=1 jAij. It can be easily seen that for a...
Show moreA logarithmic signature (LS) for a nite group G is an ordered tuple = [A1;A2; : : : ;An] of subsets Ai of G, such that every element g 2 G can be expressed uniquely as a product g = a1a2 : : : ; an, where ai 2 Ai. Logarithmic signatures were dened by Magliveras in the late 1970's for arbitrary nite groups in the context of cryptography. They were also studied for abelian groups by Hajos in the 1930's. The length of an LS is defined to be `() = Pn i=1 jAij. It can be easily seen that for a group G of order Qk j=1 pj mj , the length of any LS for G satises `() Pk j=1mjpj . An LS for which this lower bound is achieved is called a minimal logarithmic signature (MLS). The MLS conjecture states that every finite simple group has an MLS. If the conjecture is true then every finite group will have an MLS. The conjecture was shown to be true by a number of researchers for a few classes of finite simple groups. However, the problem is still wide open. This dissertation addresses the MLS conjecture for the classical simple groups. In particular, it is shown that MLS's exist for the symplectic groups Sp2n(q), the orthogonal groups O 2n(q0) and the corresponding simple groups PSp2n(q) and 2n(q0) for all n 2 N, prime power q and even prime power q0. The existence of an MLS is also shown for all unitary groups GUn(q) for all odd n and q = 2s under the assumption that an MLS exists for GUn 1(q). The methods used are very general and algorithmic in nature and may be useful for studying all nite simple groups of Lie type and possibly also the sporadic groups. The blocks of logarithmic signatures constructed in this dissertation have cyclic structure and provide a sort of cyclic decomposition for these classical groups.
Show less - Date Issued
- 2011
- PURL
- http://purl.flvc.org/FAU/3172943
- Subject Headings
- Finite groups, Abelian groups, Number theory, Combinatorial group theory, Mathematical recreations, Linear algebraic groups, Lie groups
- Format
- Document (PDF)
- Title
- On the minimal logarithmic signature conjecture.
- Creator
- Singhi, Nidhi., Charles E. Schmidt College of Science, Department of Mathematical Sciences
- Abstract/Description
-
The minimal logarithmic signature conjecture states that in any finite simple group there are subsets Ai, 1 i s such that the size jAij of each Ai is a prime or 4 and each element of the group has a unique expression as a product Qs i=1 ai of elements ai 2 Ai. Logarithmic signatures have been used in the construction of several cryptographic primitives since the late 1970's [3, 15, 17, 19, 16]. The conjecture is shown to be true for various families of simple groups including cyclic groups,...
Show moreThe minimal logarithmic signature conjecture states that in any finite simple group there are subsets Ai, 1 i s such that the size jAij of each Ai is a prime or 4 and each element of the group has a unique expression as a product Qs i=1 ai of elements ai 2 Ai. Logarithmic signatures have been used in the construction of several cryptographic primitives since the late 1970's [3, 15, 17, 19, 16]. The conjecture is shown to be true for various families of simple groups including cyclic groups, An, PSLn(q) when gcd(n; q 1) is 1, 4 or a prime and several sporadic groups [10, 9, 12, 14, 18]. This dissertation is devoted to proving that the conjecture is true for a large class of simple groups of Lie type called classical groups. The methods developed use the structure of these groups as isometry groups of bilinear or quadratic forms. A large part of the construction is also based on the Bruhat and Levi decompositions of parabolic subgroups of these groups. In this dissertation the conjecture is shown to be true for the following families of simple groups: the projective special linear groups PSLn(q), the projective symplectic groups PSp2n(q) for all n and q a prime power, and the projective orthogonal groups of positive type + 2n(q) for all n and q an even prime power. During the process, the existence of minimal logarithmic signatures (MLS's) is also proven for the linear groups: GLn(q), PGLn(q), SLn(q), the symplectic groups: Sp2n(q) for all n and q a prime power, and for the orthogonal groups of plus type O+ 2n(q) for all n and q an even prime power. The constructions in most of these cases provide cyclic MLS's. Using the relationship between nite groups of Lie type and groups with a split BN-pair, it is also shown that every nite group of Lie type can be expressed as a disjoint union of sets, each of which has an MLS.
Show less - Date Issued
- 2011
- PURL
- http://purl.flvc.org/FAU/3172946
- Subject Headings
- Finite groups, Abelian groups, Number theory, Combinatorial group theory, Mathematical recreations, Linear algebraic groups, Lie groups
- Format
- Document (PDF)