Current Search: Adaptive control systems (x)
View All Items
Pages
- Title
- Using adaptive controllers in the realization of a position control scheme.
- Creator
- Samples, Robert Hyram, Jr., Florida Atlantic University, Pajunen, Grazyna, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Many positioning systems with varying loads or geometries, such as robotic systems, could take advantage of the class of non-linear controllers known as Adaptive Controls. Model Reference and Pole Placement Adaptive Controllers are usually the preferred techniques for position control systems. Pole Placement is the more universally applicable technique. Adaptive controllers must be able to change control parameters as the system's parameters change (i.e., as is the case with a load or...
Show moreMany positioning systems with varying loads or geometries, such as robotic systems, could take advantage of the class of non-linear controllers known as Adaptive Controls. Model Reference and Pole Placement Adaptive Controllers are usually the preferred techniques for position control systems. Pole Placement is the more universally applicable technique. Adaptive controllers must be able to change control parameters as the system's parameters change (i.e., as is the case with a load or geometry change). The most common and perhaps the fastest converging technique uses the Least Squares Identification Algorithm. Many positioning systems cannot tolerate overshoot. These systems should use an adaptive velocity controller in conjunction with a conventional position controller. This will minimize system overshoot during the learning period. Adaptive controllers tend to be very complex and require a great number of computations. With today's advances in computer technology, adaptive controllers can now be economically considered for many industrial, consumer and military positioning applications.
Show less - Date Issued
- 1988
- PURL
- http://purl.flvc.org/fcla/dt/14474
- Subject Headings
- Adaptive control systems
- Format
- Document (PDF)
- Title
- Adaptive control of vibration in flexible smart structures.
- Creator
- Gopinathan, Murali., Florida Atlantic University, Pajunen, Grazyna, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
This dissertation is concerned with the relevant research in developing finite dimensional indirect adaptive schemes to control vibrations in flexible smart structures based on the finite element approximation of the infinite dimensional system. The advantage of this type of modeling is that the dominant modes of vibrations wherein the total energy is concentrated are accommodated thereby avoiding the so-called "spillover" phenomenon. Further, the mass, stiffness and damping coefficients...
Show moreThis dissertation is concerned with the relevant research in developing finite dimensional indirect adaptive schemes to control vibrations in flexible smart structures based on the finite element approximation of the infinite dimensional system. The advantage of this type of modeling is that the dominant modes of vibrations wherein the total energy is concentrated are accommodated thereby avoiding the so-called "spillover" phenomenon. Further, the mass, stiffness and damping coefficients associated with each element appear explicitly in the model facilitating the derivation of the ARMA parametric representation which is suitable for on-line estimation of the structural parameters. The state-space representation of the finite dimensional model is used to design an indirect linear quadratic self tuning regulator algorithm using the parameter estimation, indicated above. Further, a method to choose the control and state weighting matrices (required to design the controller) to yield a stable closed-loop system, is presented. Simulation results demonstrating the performance of the adaptive control system are presented. Another algorithm based on the model reference technique is also developed by considering the discrete time approximation of the finite dimensional model. This control algorithm in conjunction with the parameter estimation constitute an indirect model reference adaptive control system. Simulation results are presented to demonstrate the effect of the reference model parameters, which may impose certain constraints on the force requirements causing actuator saturation and thereby affecting the stability of the closed-loop system. In order to overcome the problem of using bulky and expensive sensors to measure transverse displacement and velocity, a new spatial recursive technique to estimate these variables alternatively by using a distributed set of (measured) strain data, is developed. Relevant algorithm enables the use of smart materials to sense the strain developed at various locations along the length of the structure leading to the development of flexible smart structures. Experimental results on the personal computer based control of vibrations in an aluminum beam using patches of polyvinyldene fluoride (PVDF), and lead zirconate titanate (PZT) as sensors and control actuators respectively, are furnished to demonstrate the feasibility of real-time implementation of the above mentioned control algorithms.
Show less - Date Issued
- 1995
- PURL
- http://purl.flvc.org/fcla/dt/12418
- Subject Headings
- Adaptive control systems, Smart structures, Vibration
- Format
- Document (PDF)
- Title
- Nonlinear modeling and adaptive control approach to functional electrical stimulation.
- Creator
- Price, Warren E., Florida Atlantic University, Pajunen, Grazyna, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
This research is concerned with the application of system identification and adaptive control to Functional Electrical Stimulation. The work consists of developing a model which describes EMG (Electromyogram) activity to forearm motion. Although several EMG models presently exist, the goal was to produce a model more suitable for on-line applications while also taking into account the system nonlinearities. The parameters of this model were estimated using a least squares algorithm. The model...
Show moreThis research is concerned with the application of system identification and adaptive control to Functional Electrical Stimulation. The work consists of developing a model which describes EMG (Electromyogram) activity to forearm motion. Although several EMG models presently exist, the goal was to produce a model more suitable for on-line applications while also taking into account the system nonlinearities. The parameters of this model were estimated using a least squares algorithm. The model was tested by simulation and experimentally collected data. The developed model explains well the forearm movement. From the developed model, an adaptive controller was designed using a model reference control scheme. This adaptive controller was used for generating the suitable stimulus pattern. The simulation results showed good tracking and indicated the controllers ability to adapt to changes in the arm's nonlinear gain.
Show less - Date Issued
- 1990
- PURL
- http://purl.flvc.org/fcla/dt/14641
- Subject Headings
- Electric stimulation, Electrotherapeutics, Adaptive control systems
- Format
- Document (PDF)
- Title
- MODEL REFERENCE ADAPTIVE CONTROL OF BLOOD PRESSURE.
- Creator
- STEINMETZ, MICHAEL JOSEPH., Florida Atlantic University, Pajunen, Grazyna, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Several adaptive controllers have been designed to control the infusion of the drug sodium nitroprusside for the purpose of reducing high blood pressure in post surgical patients. Most of these controllers have not considered one or more factors of the controlled system including the stochastic background noise present in the patients, the time varying nature of the patient, and the constraints imposed on the control input and system output. This thesis presents a model reference adaptive...
Show moreSeveral adaptive controllers have been designed to control the infusion of the drug sodium nitroprusside for the purpose of reducing high blood pressure in post surgical patients. Most of these controllers have not considered one or more factors of the controlled system including the stochastic background noise present in the patients, the time varying nature of the patient, and the constraints imposed on the control input and system output. This thesis presents a model reference adaptive controller which takes into account all of these factors. Through simulations on a personal computer, the robustness of the controller is demonstrated in the presence of noise, time varying parameters, and deterministic disturbances. Furthermore, this performance is achieved without requiring any prior knowledge of the system delay.
Show less - Date Issued
- 1987
- PURL
- http://purl.flvc.org/fcla/dt/14408
- Subject Headings
- Blood pressure--Regulation, Adaptive control system
- Format
- Document (PDF)
- Title
- FIELD EXPERIMENT ON THE CAPACITY IMPACT OF VEHICLE AUTOMATION ON ELECTRIC VEHICLES (EVS) – CASE STUDY OF ADAPTIVE CRUISE CONTROL (ACC).
- Creator
- Majumder, Tasnim Anika, Kan, David, Florida Atlantic University, Department of Civil, Environmental and Geomatics Engineering, College of Engineering and Computer Science
- Abstract/Description
-
Today’s mainstream vehicles are partially automated via an Advanced Driver Assistance Feature (ADAS) known as Adaptive Cruise Control (ACC). ACC relies on data from onboard sensors to automatically adjust speed to maintain a safe following distance with the preceding vehicle. Contrary to expectations for automated vehicles, ACC may reduce capacity at bottlenecks because its delayed response and limited initial acceleration during queue discharge could increase the average headway. Fortunately...
Show moreToday’s mainstream vehicles are partially automated via an Advanced Driver Assistance Feature (ADAS) known as Adaptive Cruise Control (ACC). ACC relies on data from onboard sensors to automatically adjust speed to maintain a safe following distance with the preceding vehicle. Contrary to expectations for automated vehicles, ACC may reduce capacity at bottlenecks because its delayed response and limited initial acceleration during queue discharge could increase the average headway. Fortunately, when ACC is paired with fully electric vehicles (EVs), EV’s unique powertrain characteristics such as instantaneous torque and aggressive regenerative braking could allow ACC to adopt shorter headways and accelerate more swiftly to maintain shorter headways during queue discharge, therefore reverse the negative impact on capacity. This has been verified in a series of car following field experiments. Field experiments demonstrate that EVs with ACC can achieve a capacity as high as 3333 veh/hr/lane when cruising in steady state conditions at typical freeway speeds (60 mph and 55 mph) and arterial speeds (45 mph and 35 mph). Furthermore, speed fluctuations and disturbances that may come from queues forming at or near the bottleneck do not reduce the capacity, unlike ACC-equipped internal combustion engine (ICE) vehicles, making ACC-equipped EVs outperform ICE vehicles with ACC, as well as human drivers.
Show less - Date Issued
- 2023
- PURL
- http://purl.flvc.org/fau/fd/FA00014283
- Subject Headings
- Automated vehicles, Electric vehicles, Adaptive control systems
- Format
- Document (PDF)
- Title
- Design and implementation of an adaptive control system for active noise control.
- Creator
- Duprez, Adrien Eric., Florida Atlantic University, Cuschieri, Joseph M.
- Abstract/Description
-
This thesis describes the design and implementation of an adaptive control system for active noise control. The main approaches available for implementing an active noise controller are presented and discussed. A Least Mean Squares (LMS) based algorithm, the Filtered-X LMS (FXLMS) algorithm, is selected for implementation. The significance of factors, such as delays, system output noise, system complexity, type and size of adaptive filter, frequency bandwidth, etc..., which can limit the...
Show moreThis thesis describes the design and implementation of an adaptive control system for active noise control. The main approaches available for implementing an active noise controller are presented and discussed. A Least Mean Squares (LMS) based algorithm, the Filtered-X LMS (FXLMS) algorithm, is selected for implementation. The significance of factors, such as delays, system output noise, system complexity, type and size of adaptive filter, frequency bandwidth, etc..., which can limit the performance of the adaptive control, is investigated in simulations. For hardware implementation, a floating-point DSP is selected to implement the adaptive controller. The control program and its implementation on the DSP are discussed. The program is first tested with a hardware-in-the-loop set-up and then implemented on a physical system. Active Noise Control in a duct is finally successfully demonstrated. The hardware and the results are discussed.
Show less - Date Issued
- 2001
- PURL
- http://purl.flvc.org/fcla/dt/12771
- Subject Headings
- Adaptive control systems, Active noise and vibration control
- Format
- Document (PDF)
- Title
- Design of an adaptive nonlinear controller for an autonomous underwater vehicle equipped with a vectored thruster.
- Creator
- Morel, Yannick., Florida Atlantic University, Leonessa, Alexander, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The tasks Autonomous Underwater Vehicles (AUVs) are expected to perform are becoming more and more challenging. Thus, to be able to address such tasks, we implemented a high maneuverability propulsion system: a vectored thruster. The design of a vehicle equipped with such a propulsion system will be presented, from a mechanical, electronic and software point of view. The motion control of the resulting system is fairly complex, and no suitable controller is available in the literature....
Show moreThe tasks Autonomous Underwater Vehicles (AUVs) are expected to perform are becoming more and more challenging. Thus, to be able to address such tasks, we implemented a high maneuverability propulsion system: a vectored thruster. The design of a vehicle equipped with such a propulsion system will be presented, from a mechanical, electronic and software point of view. The motion control of the resulting system is fairly complex, and no suitable controller is available in the literature. Accordingly, we will present the derivation of a novel tracking controller, whose adaptive properties will compensate for the lack of knowledge of the system's parameters. Computer simulations are provided and show the performance and robustness of the proposed control algorithm to external perturbations, unmodelled dynamics and dynamics variation. We finally illustrate the advantage of using an adaptive controller by comparing the presented controller to a Proportional Integral Derivative controller.
Show less - Date Issued
- 2002
- PURL
- http://purl.flvc.org/fcla/dt/12986
- Subject Headings
- Hydrodynamics, Nonlinear control theory, Adaptive control systems, Oceanographic submersibles
- Format
- Document (PDF)
- Title
- Adaptive controller design for an autonomous twin-hulled surface vessel with uncertain displacement and drag.
- Creator
- Klinger, Wilhelm B., von Ellenrieder, Karl, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The design and validation of a low-level backstepping controller for speed and heading that is adaptive in speed for a twin-hulled underactuated unmanned surface vessel is presented. Consideration is given to the autonomous launch and recovery of an underwater vehicle in the decision to pursue an adaptive control approach. Basic system identification is conducted and numerical simulation of the vessel is developed and validated. A speed and heading controller derived using the backstepping...
Show moreThe design and validation of a low-level backstepping controller for speed and heading that is adaptive in speed for a twin-hulled underactuated unmanned surface vessel is presented. Consideration is given to the autonomous launch and recovery of an underwater vehicle in the decision to pursue an adaptive control approach. Basic system identification is conducted and numerical simulation of the vessel is developed and validated. A speed and heading controller derived using the backstepping method and a model reference adaptive controller are developed and ultimately compared through experimental testing against a previously developed control law. Experimental tests show that the adaptive speed control law outperforms the non-adaptive alternatives by as much as 98% in some cases; however heading control is slightly sacrificed when using the adaptive speed approach. It is found that the adaptive control law is the best alternative when drag and mass properties of the vessel are time-varying and uncertain.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004130, http://purl.flvc.org/fau/fd/FA00004130
- Subject Headings
- Adaptive control systems, Drag (Aerodynamics), Intelligent control systems, Intelligent control systems, Vehicles, Remotely piloted
- Format
- Document (PDF)
- Title
- Intelligent Supervisory Switching Control of Unmanned Surface Vehicles.
- Creator
- Bertaska, Ivan Rodrigues, von Ellenrieder, Karl, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
novel approach to extend the decision-making capabilities of unmanned surface vehicles (USVs) is presented in this work. A multi-objective framework is described where separate controllers command different behaviors according to a desired trajectory. Three behaviors are examined – transiting, station-keeping and reversing. Given the desired trajectory, the vehicle is able to autonomously recognize which behavior best suits a portion of the trajectory. The USV uses a combination of a...
Show morenovel approach to extend the decision-making capabilities of unmanned surface vehicles (USVs) is presented in this work. A multi-objective framework is described where separate controllers command different behaviors according to a desired trajectory. Three behaviors are examined – transiting, station-keeping and reversing. Given the desired trajectory, the vehicle is able to autonomously recognize which behavior best suits a portion of the trajectory. The USV uses a combination of a supervisory switching control structure and a reinforcement learning algorithm to create a hybrid deliberative and reactive approach to switch between controllers and actions. Reinforcement learning provides a deliberative method to create a controller switching policy, while supervisory switching control acts reactively to instantaneous changes in the environment. Each action is restricted to one controller. Due to the nonlinear effects in these behaviors, two underactuated backstepping controllers and a fully-actuated backstepping controller are proposed for each transiting, reversing and station-keeping behavior, respectively, restricted to three degrees of freedom. Field experiments are presented to validate this system on the water with a physical USV platform under Sea State 1 conditions. Main outcomes of this work are that the proposed system provides better performance than a comparable gain-scheduled nonlinear controller in terms of an Integral of Absolute Error metric. Additionally, the deliberative component allows the system to identify dynamically infeasible trajectories and properly accommodate them.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004671, http://purl.flvc.org/fau/fd/FA00004671
- Subject Headings
- Adaptive control systems, Artificial intelligence, Engineering mathematics, Intelligent control systems, Mechatronics, Nonlinear control theory, Transportation engineering
- Format
- Document (PDF)
- Title
- Wind Feedforward Control of a USV.
- Creator
- Qu, Huajin, von Ellenrieder, Karl, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
In this research, a wind feedforward (FF) controller has been developed to augment closed loop feedback controllers for the position and heading station keeping control of Unmanned Surface Vehicles (USVs). The performance of the controllers was experimentally tested using a 16 foot USV in an outdoor marine environment. The FF controller was combined with three nonlinear feedback controllers, a Proportional–Derivative (PD) controller, a Backstepping (BS) controller, and a Sliding mode (SM)...
Show moreIn this research, a wind feedforward (FF) controller has been developed to augment closed loop feedback controllers for the position and heading station keeping control of Unmanned Surface Vehicles (USVs). The performance of the controllers was experimentally tested using a 16 foot USV in an outdoor marine environment. The FF controller was combined with three nonlinear feedback controllers, a Proportional–Derivative (PD) controller, a Backstepping (BS) controller, and a Sliding mode (SM) controller, to improve the station-keeping performance of the USV. To address the problem of wind model uncertainties, adaptive wind feedforward (AFF) control schemes are also applied to the FF controller, and implemented together with the BS and SM feedback controllers. The adaptive law is derived using Lyapunov Theory to ensure stability. On-water station keeping tests of each combination of FF and feedback controllers were conducted in the U.S. Intracoastal Waterway in Dania Beach, FL USA. Five runs of each test condition were performed; each run lasted at least 10 minutes. The experiments were conducted in Sea State 1 with an average wind speed of between 1 to 4 meters per second and significant wave heights of less than 0.2 meters. When the performance of the controllers is compared using the Integral of the Absolute Error (IAE) of position criterion, the experimental results indicate that the BS and SM feedback controllers significantly outperform the PD feedback controller (e.g. a 33% and a 44% decreases in the IAE, respectively). It is also found that FF is beneficial for all three feedback controllers and that AFF can further improve the station keeping performance. For example, a BS feedback control combined with AFF control reduces the IAE by 25% when compared with a BS feedback controller combined with a non-adaptive FF controller. Among the eight combinations of controllers tested, SM feedback control combined with AFF control gives the best station keeping performance with an average position and heading error of 0.32 meters and 4.76 degrees, respectively.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004623, http://purl.flvc.org/fau/fd/FA00004623
- Subject Headings
- Wind turbines--Control., Adaptive control systems., Adaptive signal processing., Intelligent control systems., Wind-pressure., Intelligent sensors.
- Format
- Document (PDF)
- Title
- Output Stability Analysis for Nonlinear Systems with Time Delays.
- Creator
- Gallolu Kankanamalage, Hasala Senpathy, Wang, Yuan, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Mathematical Sciences
- Abstract/Description
-
Systems with time delays have a broad range of applications not only in control systems but also in many other disciplines such as mathematical biology, financial economics, etc. The time delays cause more complex behaviours of the systems. It requires more sophisticated analysis due to the infinite dimensional structure of the space spaces. In this thesis we investigate stability properties associated with output functions of delay systems. Our primary target is the equivalent Lyapunov...
Show moreSystems with time delays have a broad range of applications not only in control systems but also in many other disciplines such as mathematical biology, financial economics, etc. The time delays cause more complex behaviours of the systems. It requires more sophisticated analysis due to the infinite dimensional structure of the space spaces. In this thesis we investigate stability properties associated with output functions of delay systems. Our primary target is the equivalent Lyapunov characterization of input-tooutput stability (ios). A main approach used in this work is the Lyapuno Krasovskii functional method. The Lyapunov characterization of the so called output-Lagrange stability is technically the backbone of this work, as it induces a Lyapunov description for all the other output stability properties, in particular for ios. In the study, we consider two types of output functions. The first type is defined in between Banach spaces, whereas the second type is defined between Euclidean spaces. The Lyapunov characterization for the first type of output maps provides equivalence between the stability properties and the existence of the Lyapunov-Krasovskii functionals. On the other hand, as a special case of the first type, the second type output renders flexible Lyapunov descriptions that are more efficient in applications. In the special case when the output variables represent the complete collection of the state variables, our Lyapunov work lead to Lyapunov characterizations of iss, complementing the current iss theory with some novel results. We also aim at understanding how output stability are affected by the initial data and the external signals. Since the output variables are in general not a full collection of the state variables, the overshoots and decay properties may be affected in different ways by the initial data of either the state variables or just only the output variables. Accordingly, there are different ways of defining notions on output stability, making them mathematically precisely. After presenting the definitions, we explore the connections of these notions. Understanding the relation among the notions is not only mathematically necessary, it also provides guidelines in system control and design.
Show less - Date Issued
- 2017
- PURL
- http://purl.flvc.org/fau/fd/FA00004935, http://purl.flvc.org/fau/fd/FA00004935
- Subject Headings
- Nonlinear systems., Time delay systems., Multiagent systems., Adaptive control systems., Chaotic behavior in systems.
- Format
- Document (PDF)
- Title
- Self-Contained Soft Robotic Jellyfish with Water-Filled Bending Actuators and Positional Feedback Control.
- Creator
- Frame, Jennifer, Engeberg, Erik, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
This thesis concerns the design, construction, control, and testing of a novel self-contained soft robotic vehicle; the JenniFish is a free-swimming jellyfish-like soft robot that could be adapted for a variety of uses, including: low frequency, low power sensing applications; swarm robotics; a STEM classroom learning resource; etc. The final vehicle design contains eight PneuNet-type actuators radially situated around a 3D printed electronics canister. These propel the vehicle when inflated...
Show moreThis thesis concerns the design, construction, control, and testing of a novel self-contained soft robotic vehicle; the JenniFish is a free-swimming jellyfish-like soft robot that could be adapted for a variety of uses, including: low frequency, low power sensing applications; swarm robotics; a STEM classroom learning resource; etc. The final vehicle design contains eight PneuNet-type actuators radially situated around a 3D printed electronics canister. These propel the vehicle when inflated with water from its surroundings by impeller pumps; since the actuators are connected in two neighboring groups of four, the JenniFish has bi-directional movement capabilities. Imbedded resistive flex sensors provide actuator position to the vehicle’s PD controller. Other onboard sensors include an IMU and an external temperature sensor. Quantitative constrained load cell tests, both in-line and bending, as well as qualitative free-swimming video tests were conducted to find baseline vehicle performance capabilities. Collected metrics compare well with existing robotic jellyfish.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004656, http://purl.flvc.org/fau/fd/FA00004656
- Subject Headings
- Adaptive control systems, Artificial intelligence, Autonomous robots, Computational intelligence, Robotics
- Format
- Document (PDF)
- Title
- Hardware in the loop simulation of generic nodes using Lontalk.
- Creator
- Gupta, Sangeeta., Florida Atlantic University, Evett, Matthew P.
- Abstract/Description
-
Designing a dependable network for a highly sustainable system gives a challenging network design problem. The network must be highly adaptive to the changes in the network environment. It should also sustain any damages occurring in the network and recover itself quickly and efficiently. This thesis ultimately maps a real network to simulated network by developing a concept of generic nodes and experimentally investigates different parameters that affects the reliability of the system. The...
Show moreDesigning a dependable network for a highly sustainable system gives a challenging network design problem. The network must be highly adaptive to the changes in the network environment. It should also sustain any damages occurring in the network and recover itself quickly and efficiently. This thesis ultimately maps a real network to simulated network by developing a concept of generic nodes and experimentally investigates different parameters that affects the reliability of the system. The work includes designing a simulation for generation of network traffic in a simulated network and studying the behavior of the network with different parameters. The experiment helped us in determining the optimum values of these parameters. For the selected set of experiments and further implies that simulation can determine the nodes different parameter in a control network and will result in a Dependable system.
Show less - Date Issued
- 1998
- PURL
- http://purl.flvc.org/fcla/dt/15596
- Subject Headings
- Intelligent control systems, Adaptive control systems, Local area networks (Computer networks)
- Format
- Document (PDF)
- Title
- Automated Launch and Recovery of an Autonomous Underwater Vehicle from an Unmanned Surface Vessel.
- Creator
- Sarda, Edoardo I, Dhanak, Manhar R., Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Research on collaboration among unmanned platforms is essential to improve the applications for autonomous missions, by expanding the working environment of the robotic systems, and reducing the risks and the costs associated with conducting manned operations. This research is devoted to enable the collaboration between an Unmanned Surface Vehicle (USV) and an Autonomous Underwater Vehicle (AUV), by allowing the first one to launch and recover the second one. The objective of this...
Show moreResearch on collaboration among unmanned platforms is essential to improve the applications for autonomous missions, by expanding the working environment of the robotic systems, and reducing the risks and the costs associated with conducting manned operations. This research is devoted to enable the collaboration between an Unmanned Surface Vehicle (USV) and an Autonomous Underwater Vehicle (AUV), by allowing the first one to launch and recover the second one. The objective of this dissertation is to identify possible methods to launch and recover a REMUS 100 AUV from a WAM-V 16 USV, thus developing this capability by designing and implementing a launch and recovery system (LARS). To meet this objective, a series of preliminary experiments was first performed to identify two distinct methods to launch and recover the AUV: mobile and semi-stationary. Both methods have been simulated using the Orcaflex software. Subsequently, the necessary control systems to create the mandatory USV autonomy for the purpose of launch and recovery were developed. Specifically, a series of low-level controllers were designed and implemented to enable two autonomous maneuvers on the USV: station-keeping and speed & heading control. In addition, a level of intelligence to autonomously identify the optimal operating conditions within the vehicles' working environment, was derived and integrated on the USV. Lastly, a LARS was designed and implemented on the vehicles to perform the operation following the proposed methodology. The LARS and all subsystems developed for this research were extensively tested through sea-trials. The methodology for launch and recovery, the design of the LARS and the experimental findings are reported in this document.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004631, http://purl.flvc.org/fau/fd/FA00004631
- Subject Headings
- Underwater acoustic telemetry., Fuzzy systems., Nonlinear control theory., Adaptive signal processing., Oceanographic submersibles--Automatic control., Submersibles--Control systems.
- Format
- Document (PDF)
- Title
- A high-level fuzzy logic guidance system for an unmanned surface vehicle (USV) tasked to perform an autonomous launch and recovery (ALR) of an unmanned underwater vehicle (UUV).
- Creator
- Pearson, David, An, Pak-Cheung, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
There have been much technological advances and research in Unmanned Surface Vehicles (USV) as a support and delivery platform for Autonomous/Unmanned Underwater Vehicles (AUV/UUV). Advantages include extending underwater search and survey operations time and reach, improving underwater positioning and mission awareness, in addition to minimizing the costs and risks associated with similar manned vessel operations. The objective of this thesis is to present the design and development a high...
Show moreThere have been much technological advances and research in Unmanned Surface Vehicles (USV) as a support and delivery platform for Autonomous/Unmanned Underwater Vehicles (AUV/UUV). Advantages include extending underwater search and survey operations time and reach, improving underwater positioning and mission awareness, in addition to minimizing the costs and risks associated with similar manned vessel operations. The objective of this thesis is to present the design and development a high-level fuzzy logic guidance controller for a WAM-V 14 USV in order to autonomously launch and recover a REMUS 100 AUV. The approach to meeting this objective is to develop ability for the USV to intercept and rendezvous with an AUV that is in transit in order to maximize the probability of a final mobile docking maneuver. Specifically, a fuzzy logic Rendezvous Docking controller has been developed that generates Waypoint-Heading goals for the USV to minimize the cross-track errors between the USV and AUV. A subsequent fuzzy logic Waypoint-Heading controller has been developed to provide the desired heading and speed commands to the low-level controller given the Waypoint-Heading goals. High-level mission control has been extensively simulated using Matlab and partially characterized in real-time during testing. Detailed simulation, experimental results and findings will be reported in this paper.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004315, http://purl.flvc.org/fau/fd/FA00004315
- Subject Headings
- Adaptive signal processing, Fuzzy sets, Fuzzy systems, Nonlinear control theory, Oceanographic submersibles -- Automatic control, Submersibles -- Control systems, Underwater acoustic telemetry
- Format
- Document (PDF)
- Title
- Nonlinear control of an unmanned amphibious vehicle.
- Creator
- Alvarez, Jose L., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
The DUCKW-Ling is an 8.3 foot long, amphibious water plane area twin hull (SWATH) concept vehicle which is propelled by a pair of crawler tracks on land and dual propellers when water-borne. In its operational zone, the vehicle's dynamics change dramatically as it transitions from being completely water-borne and buoyancy supported to being completely land-borne and track supported. In the water environment, a cascaded, first-order sliding mode controller was used to control the surge and...
Show moreThe DUCKW-Ling is an 8.3 foot long, amphibious water plane area twin hull (SWATH) concept vehicle which is propelled by a pair of crawler tracks on land and dual propellers when water-borne. In its operational zone, the vehicle's dynamics change dramatically as it transitions from being completely water-borne and buoyancy supported to being completely land-borne and track supported. In the water environment, a cascaded, first-order sliding mode controller was used to control the surge and heading of the vehicle, and was capable of having a faster response when compared to using a proportional controller. Additionally, field trials of the DUKW-Ling show the capability of the vehicle to navigate and track predetermined waypoints in both terrestrial and aquatic terrains. In the transitional zone, the electric motor current from the tracks was used as the feedback mechanism to adequately actuate the propellers and tracks in the system as the dynamics of the vehicle change.
Show less - Date Issued
- 2013
- PURL
- http://purl.flvc.org/fcla/dt/3362334
- Subject Headings
- Nonlinear control theory, Feedback control systems, Motor vehicles, Amphibious, Design and construction, Adaptive signal processing
- Format
- Document (PDF)
- Title
- Dynamic simulation and control of an autonomous surface vehicle.
- Creator
- VanZwieten, Tannen S., Florida Atlantic University, Leonessa, Alexander, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
Autonomous Surface Vehicle (ASV) research and development is inspired by the navigating and communicatiog challenges of Autonomous Underwater Vehicles (AUVs). The development objective is to provide real time positioning of and communication with AUVs through the air-sea interface. Despite extensive research on AUVs, the ASV has had limited research. The NAVY's desire to make AUV's defense capabilities realizable adds to the project's appeal. Guidance and control play an integral part in the...
Show moreAutonomous Surface Vehicle (ASV) research and development is inspired by the navigating and communicatiog challenges of Autonomous Underwater Vehicles (AUVs). The development objective is to provide real time positioning of and communication with AUVs through the air-sea interface. Despite extensive research on AUVs, the ASV has had limited research. The NAVY's desire to make AUV's defense capabilities realizable adds to the project's appeal. Guidance and control play an integral part in the ASV's success, motivating this thesis work. The overall vehicle dynamics were modeled and numerically simulated for 3 DOF lateral motion. These are development tools for the testing and tuning of PID and adaptive control algorithms. The results show the adaptive controller to be advantageous in terms of tuning, robustness and tracking performances. It uses a single layer neural network that bypasses the need for information about the system's dynamic structure and characteristics and provides portability.
Show less - Date Issued
- 2003
- PURL
- http://purl.flvc.org/fcla/dt/13081
- Subject Headings
- Hydrodynamics, Adaptive control systems--Computer simulation, PID controllers--Computer simulation, Neural networks (Computer science)
- Format
- Document (PDF)
- Title
- An adaptive computed torque controller for the I.B.M. Electric Drive Robot.
- Creator
- Miller, Lee Wayne., Florida Atlantic University, Pajunen, Grazyna, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
The I.B.M. Electric Drive Robot (E.D.R.) is a six-link manipulator originally controlled by a classical analog P.I.D. controller. Its performance is not satisfactory because of its poor tracking capabilities and a considerable vibration during arm movement. This is the central motivation for designing an adaptive computed torque controller for this system. In order to accomplish this the physical model of the robot is first reparameterized such that it is linear with respect to a set of...
Show moreThe I.B.M. Electric Drive Robot (E.D.R.) is a six-link manipulator originally controlled by a classical analog P.I.D. controller. Its performance is not satisfactory because of its poor tracking capabilities and a considerable vibration during arm movement. This is the central motivation for designing an adaptive computed torque controller for this system. In order to accomplish this the physical model of the robot is first reparameterized such that it is linear with respect to a set of uncertain parameters. Once this is accomplished the adaptive controller is then formulated. Next methods of computer simulation are developed and employed. These simulation results show the superior performance of the proposed scheme over both a classical computed torque controller and the current P.I.D. controller.
Show less - Date Issued
- 1990
- PURL
- http://purl.flvc.org/fcla/dt/14612
- Subject Headings
- Adaptive control systems--Computer simulation, PID controllers--Computer simulation, Robotics, Manipulators (Mechanism)
- Format
- Document (PDF)
- Title
- A reduced delay OPAC system.
- Creator
- Kaskawits, Stuart Jay., Florida Atlantic University, Pajunen, Grazyna, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Implementation of the Optimized Policies for Adaptive Control (OPAC) strategy in conjunction with a vehicle velocity controller offers the potential for significantly improving the control strategies used at isolated intersections with respect to measured vehicle delays. The exhaustive sequential search procedure by OPAC provides the optimal switching policies for the intersection while the vehicle velocity controller varies vehicle velocities to reduce vehicle stopping delays. The OPAC...
Show moreImplementation of the Optimized Policies for Adaptive Control (OPAC) strategy in conjunction with a vehicle velocity controller offers the potential for significantly improving the control strategies used at isolated intersections with respect to measured vehicle delays. The exhaustive sequential search procedure by OPAC provides the optimal switching policies for the intersection while the vehicle velocity controller varies vehicle velocities to reduce vehicle stopping delays. The OPAC algorithm implemented with the vehicle velocity controller was found to have substantially lower delays than OPAC alone.
Show less - Date Issued
- 1994
- PURL
- http://purl.flvc.org/fcla/dt/15072
- Subject Headings
- Adaptive control systems, Traffic engineering--Data processing, Traffic flow, Electronic traffic controls
- Format
- Document (PDF)
- Title
- Stereo vision-based target tracking system for USV operations.
- Creator
- Sinisterra, Armando Jose, Dhanak, Manhar R., Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
A methodology to estimate the state of a moving marine vehicle, defined by its position, velocity and heading, from an unmanned surface vehicle (USV), also in motion, using a stereo vision-based system, is presented in this work, in support of following a target vehicle using an USV.
- Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004466, http://purl.flvc.org/fau/fd/FA00004466
- Subject Headings
- Adaptive control systems, Adaptive signal processing, Computer vision, Inertial navigation systems, Intelligent control systems, Motion segmentaton, Oceanographic instruments -- Development, Ubiquitous computing
- Format
- Document (PDF)