Current Search: Actuators -- Materials (x)
View All Items
- Title
- Study on Reinforced Soft Actuator for Exoskeleton Actuators.
- Creator
- Shuqir, Mohammad, Engeberg, Erik, Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
This thesis concerns the design, construction, control, and testing of soft robotic actuators to be used in a soft robotic exoskeleton; the Boa Exoskeleton could be used for joint rehabilitation including: wrist, elbow and possibly shoulder or any joint that requires a soft body actuator to aid with bending movement. We detail the design, modeling and fabrication of two types of actuators: Fiber-reinforced Actuator and PneuNet Actuator. Fiber-Reinforced actuator was chosen for the exoskeleton...
Show moreThis thesis concerns the design, construction, control, and testing of soft robotic actuators to be used in a soft robotic exoskeleton; the Boa Exoskeleton could be used for joint rehabilitation including: wrist, elbow and possibly shoulder or any joint that requires a soft body actuator to aid with bending movement. We detail the design, modeling and fabrication of two types of actuators: Fiber-reinforced Actuator and PneuNet Actuator. Fiber-Reinforced actuator was chosen for the exoskeleton due to its higher force. The Fiber-Reinforced actuator molds were 3D printed, four models were made. Two materials were used to fabricate the models: Dragon Skin 30A and Sort-A-Clear 40A. Two number of windings: (n=40) and (n=25), actuators wrapped with carbon fiber. An air tank was used to supply pressure. The actuators were studied at different pressures. Pressure-force relation was studied, and a close to linear relationship was found. Boa Exoskeleton was made for wrist. Electromyography (EMG) was used; Four EMG receptors were put around the arm. EMG was utilized to actuate the Boa Exoskeleton and record the muscle movement. Five tests were done on six human subjects to validate the Boa Exoskeleton.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00013098
- Subject Headings
- Actuators--Design and construction., Robotic exoskeletons., Actuators--Materials.
- Format
- Document (PDF)
- Title
- Development of a Flapping Actuator Based on Oscillating Electromagnetic Fields.
- Creator
- Spragg, Donald Oakley, Curet, Oscar M., Florida Atlantic University, College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
- Abstract/Description
-
In this work a bio-inspired flapping actuator based on varied magnetic fields is developed, controlled and characterized. The actuator is sought to contribute to the toolbox of options for bio-mimetics research. The design is that of a neodymium bar magnet on one end of an armature which is moved by two air core electromagnetic coils in the same manner as agonist and antagonist muscle pairs function in biological systems. The other end of the armature is fitted to a rigid fin extending beyond...
Show moreIn this work a bio-inspired flapping actuator based on varied magnetic fields is developed, controlled and characterized. The actuator is sought to contribute to the toolbox of options for bio-mimetics research. The design is that of a neodymium bar magnet on one end of an armature which is moved by two air core electromagnetic coils in the same manner as agonist and antagonist muscle pairs function in biological systems. The other end of the armature is fitted to a rigid fin extending beyond the streamline enclosure body to produce propulsion. A series of tests in still water were performed to measure the kinematics and propulsive force for different control schemes including the effect of adding antagonistic resistance to the control schemes. Control methods based on armature position and based on setpoint error were tested and antagonist force was found to increase consistency of control of the systems in certain cases.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004699, http://purl.flvc.org/fau/fd/FA00004699
- Subject Headings
- Actuators -- Materials, Artificial intelligence -- Biological applications, Biomimetics, Biophysics, Natural computation, Robotics, Robots -- Kinematics
- Format
- Document (PDF)