Current Search: Sickle cell disease (x)
View All Items
- Title
- ELECTRICAL IMPEDANCE SENSING OF ERYTHROCYTES AND CYTOADHESION.
- Creator
- Liu, Jia, Du, Sarah E., Florida Atlantic University, Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science
- Abstract/Description
-
Electrical impedance of cells is a sensitive indicator of changes in cellular structure and biophysical characteristics. Integration of electrical impedance sensing in microfluidics can be a useful tool for characterization of blood cells for their disease state, such as sickle cell disease and malaria. The first part of this dissertation presents application of a microfluidics-based electrical impedance sensor for the study of sickle cell disease. Dynamic cell sickling-unsickling process of...
Show moreElectrical impedance of cells is a sensitive indicator of changes in cellular structure and biophysical characteristics. Integration of electrical impedance sensing in microfluidics can be a useful tool for characterization of blood cells for their disease state, such as sickle cell disease and malaria. The first part of this dissertation presents application of a microfluidics-based electrical impedance sensor for the study of sickle cell disease. Dynamic cell sickling-unsickling process of blood cells in response to cyclic hypoxia was measured. Strong correlation was found between the electrical impedance data and patients’ hematological parameters such as levels of sickle hemoglobin and fetal hemoglobin. In addition, application of electrical impedance spectroscopy in narrow microfluidic channel was used for label-free flow cytometry and non-invasive assay of single sickle cells under controlled oxygen level. We demonstrate the capability of this new technique in differentiating normal red blood cells from sickle cells, as well as sickled cells from unsickled cells, using normoxic and hypoxic conditions. The second part of this dissertation reports an application of electrical impedance sensing for the study of placental malaria. Testing conditions were optimized so that electrical impedance can be used for real time monitoring of different cellular and molecular level variations in this in vitro model of placental malaria. Impedance characteristics of cell proliferation, syncytial fusion and long-term response of BeWo cells to adhesion of infected erythrocytes were obtained and related to the immunostaining results and inflammatory cytokines measurements. Comparing to the conventional optical microscope-based methods, electrical impedance sensing technique can provide a label-free, real-time monitoring tool to study erythrocytes and cytoadhesion, and can further be extended to other disease models and cell types.
Show less - Date Issued
- 2019
- PURL
- http://purl.flvc.org/fau/fd/FA00013389
- Subject Headings
- Microfluidics, Erythrocytes, Electric Impedance, Sickle cell disease, Malaria, Cell Adhesion
- Format
- Document (PDF)
- Title
- Development of A Portable Impedance Based Flow Cytometer for Diagnosis of Sickle Cell Disease.
- Creator
- Dieujuste, Darryl, Zhuang, Hanqi, Du, Sarah, Florida Atlantic University, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Sickle cell disease is an inherited blood cell disorder that affects about 100,000 people in the US and results in high cost of medical care exceeding $1.1 billion annually. Sickle cell patients suffer from unpredictable, painful vaso-occlusive crises. Portable, costeffective approaches for diagnosis and monitoring sickle blood activities are important for a better management of the disease and reducing the medical cost. In this research, a mobile application controlled, impedance-based flow...
Show moreSickle cell disease is an inherited blood cell disorder that affects about 100,000 people in the US and results in high cost of medical care exceeding $1.1 billion annually. Sickle cell patients suffer from unpredictable, painful vaso-occlusive crises. Portable, costeffective approaches for diagnosis and monitoring sickle blood activities are important for a better management of the disease and reducing the medical cost. In this research, a mobile application controlled, impedance-based flow cytometer is developed for the diagnosis of sickle cell disease. Calibration of the portable device is performed using a component of known impedance value. The preliminary test results are then compared to those obtained by a commercial benchtop impedance analyzer for further validation. With the developed portable flow cytometer, experiments are performed on two sickle cell samples and a healthy cell sample. The acquired results are subsequently analyzed with MATLAB scripts to extract single-cell level impedance information as well as statistics of different cell conditions. Significant differences in cell impedance signals are observed between sickle cells and normal cells, as well as between sickle cells under hypoxia and normoxia conditions.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00013145
- Subject Headings
- Sickle cell disease, Sickle cell anemia--Diagnosis, Flow cytometry--Diagnostic use, Mobile Applications
- Format
- Document (PDF)