Current Search: Metabolism (x)
View All Items
Pages
- Title
- Effects of small molecule modulators and Phospholipid Liposomes on βeta-amyloid (1-40) Amyloidogenesis.
- Creator
- Morris, Clifford, Du, Deguo, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Chemistry and Biochemistry
- Abstract/Description
-
Beta-Amyloid (1-40) (Aβ40) is an aggregation prone protein, which undergoes a nucleation-dependent aggregation process causing the pathological neurodegeneration by amyloid plaque formation implicated in Alzheimer’s disease. In this thesis, we investigated the effects of small molecule modulators extracted from the marine invertebrate Pseudopterogorgia elisabethae on the Aβ40 amyloidogenic process using in- vitro ThT fluorescence assay and atomic force microscopy. We also investigated the...
Show moreBeta-Amyloid (1-40) (Aβ40) is an aggregation prone protein, which undergoes a nucleation-dependent aggregation process causing the pathological neurodegeneration by amyloid plaque formation implicated in Alzheimer’s disease. In this thesis, we investigated the effects of small molecule modulators extracted from the marine invertebrate Pseudopterogorgia elisabethae on the Aβ40 amyloidogenic process using in- vitro ThT fluorescence assay and atomic force microscopy. We also investigated the effects of neutral and anionic phospholipid liposomes on Aβ40 aggregation. Our results show that a marine natural product Pseudopterosin-A and its derivatives can suppress and modulate the Aβ40 aggregation process. Furthermore, our results demonstrate that a neutral phospholipid liposome inhibits Aβ40 fibril formation, whereas the anionic liposomes promote it.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004453, http://purl.flvc.org/fau/fd/FA00004453
- Subject Headings
- Aggregation (Chemistry), Alzheimer's disease -- Pathogenesis, Alzheimer's disease -- Research, Amyloid beta protein, Molecular biology, Molecular dynamics, Prions, Proteins -- Metabolism -- Disorders
- Format
- Document (PDF)
- Title
- Identification and characterization of mutations in the Drosophila mitochondrial translation elongation factor iconoclast.
- Creator
- Trivigno, Catherine F., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Mitochondrial disorders resulting from defects in oxidative phosphorylation are the most common form of inherited metabolic disease. Mutations in the human mitochondrial translation elongation factor GFM1 have recently been shown to cause the lethal pediatric disorder Combined Oxidative Phosphorylation Deficiency Syndrome (COXPD1). Children harboring mutations in GFM1 exhibit severe developmental, metabolic and neurological abnormalities. This work describes the identification and extensive...
Show moreMitochondrial disorders resulting from defects in oxidative phosphorylation are the most common form of inherited metabolic disease. Mutations in the human mitochondrial translation elongation factor GFM1 have recently been shown to cause the lethal pediatric disorder Combined Oxidative Phosphorylation Deficiency Syndrome (COXPD1). Children harboring mutations in GFM1 exhibit severe developmental, metabolic and neurological abnormalities. This work describes the identification and extensive characterization of the first known mutations in iconoclast (ico), the Drosophila orthologue of GFM1. Expression of human GFM1 can rescue ico null mutants, demonstrating functional conservation between the human and fly proteins. While point mutations in ico result in developmental defects and death during embryogenesis, animals null for ico survive until the second or third instar larval stage. These results indicate that in addition to loss-of-function consequences, point mutations in ico appear to produce toxic proteins with antimorphic or neomorphic effects. Consistent with this hypothesis, transgenic expression of a mutant ICO protein is lethal when expressed during development and inhibits growth when expressed in wing discs. In addition, animals with a single copy of an ico point mutation are more sensitive to acute hyperthermic or hypoxic stress. Removal of the positively-charged tail of the protein abolishes the toxic effects of mutant ICO, demonstrating that this domain is necessary for the harmful gain-of-function phenotypes observed in ico point mutants., Further, expression of GFP-tagged constructs indicates that the C-terminal tail enhances ectopic nuclear localization of mutant ICO, suggesting that mislocalization of the protein may play a role in the antimorphic effects of mutant ICO. Taken together, these results illustrate that in addition to loss-of-function effects, gain-of-function effects can contribute significantly to the pathology caused by mutation in mitochondrial translation elongation factors.
Show less - Date Issued
- 2010
- PURL
- http://purl.flvc.org/FAU/2705081
- Subject Headings
- Drosophila melanogaster, Cytogenetics, Mutation (Biology), Mitochondrial DNA, Cell metabolism, Cellular signal transduction, Oxidation, Physiological, Genetic transcription, Regulation
- Format
- Document (PDF)
- Title
- Molecular and phenotypic characterization of MsrA MsrB mutants of Drosophila melanogaster.
- Creator
- Robbins, Kelli., Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
Aging is a multifactoral biological process of progressive and deleterious changes partially attributed to a build up of oxidatively damaged biomolecules resulting from attacks by free radicals. Methionine sulfoxide reductases (Msrs) are enzymes that repair oxidized methionine (Met) residues found in proteins. Oxidized Met produces two enantiomers, Met-S-(o) and Met-R-(o), reduced by MsrA and MsrB respectively. Unlike other model organisms, our MsrA null fly mutant did not display increased...
Show moreAging is a multifactoral biological process of progressive and deleterious changes partially attributed to a build up of oxidatively damaged biomolecules resulting from attacks by free radicals. Methionine sulfoxide reductases (Msrs) are enzymes that repair oxidized methionine (Met) residues found in proteins. Oxidized Met produces two enantiomers, Met-S-(o) and Met-R-(o), reduced by MsrA and MsrB respectively. Unlike other model organisms, our MsrA null fly mutant did not display increased sensitivity to oxidative stress or shortened lifespan, suggesting that in Drosophila, having either a functional copy of either Msr is sufficient. Here, two Msr mutant types were phenotypically assayed against isogenic controls. Results suggest that only the loss of both MsrA and MsrB produces increased sensitivity to oxidative stress and shortened lifespan, while locomotor defects became more severe with the full Msr knockout fly.
Show less - Date Issued
- 2009
- PURL
- http://purl.flvc.org/FAU/359920
- Subject Headings
- Genetic regulation, Oxidation-reduction reaction, Proteins, Chemical modification, Aging, Molecular aspects, Mutation (Biology), Cell metabolism, Mitochondrial DNA
- Format
- Document (PDF)
- Title
- Temporal response of creatine kinase and fibroblast growth factor-21 to high and low repetition resistance training programs.
- Creator
- Blanco, Rocky, Zourdos, Michael C., Florida Atlantic University, College of Education, Department of Exercise Science and Health Promotion
- Abstract/Description
-
The purpose of this study was to examine the acute and temporal response of CK- MM and FGF-21 to 3-day/wk. different repetition-range, volume-equated resistance training programs over 8-weeks in previously trained males. Sixteen trained, college- aged males were counterbalanced into high (DUP-HR) or low (DUP-LR) repetition groups. Subjects performed the squat and bench press 3x/wk. for 8 weeks. Blood samples were collected at various intervals throughout the study. Trained individuals did not...
Show moreThe purpose of this study was to examine the acute and temporal response of CK- MM and FGF-21 to 3-day/wk. different repetition-range, volume-equated resistance training programs over 8-weeks in previously trained males. Sixteen trained, college- aged males were counterbalanced into high (DUP-HR) or low (DUP-LR) repetition groups. Subjects performed the squat and bench press 3x/wk. for 8 weeks. Blood samples were collected at various intervals throughout the study. Trained individuals did not elicit significant acute or chronic changes in CK-MM or FGF-21 following training and the lack of change was present in both groups. Additionally, neither biomarker correlated with changes in 1RM strength. There was a very strong correlation between acute mean (r=0.95) and acute percentage change (r=0.97) increase from pre training to post training in week #1. Additionally, a moderate correlation in percentage change was observed (r=0.59) of both biomarkers from pre training to 48 hours post training in week #2.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004429, http://purl.flvc.org/fau/fd/FA00004429
- Subject Headings
- Bioenergetics, Cellular signal transduction, Fibroblast growth factors, Metabolic syndrome -- Pathophysiology, Protein kinases -- Inhibitors -- Therapeutic use
- Format
- Document (PDF)
- Title
- Investigating the Role of CHI3L1 in Promoting Tumor Growth and Metastasis Using Mammary Tumor Models.
- Creator
- Libreros, Stephania, Iragavarapu-Charyulu, Vijaya, Florida Atlantic University, Charles E. Schmidt College of Medicine, Department of Biomedical Science
- Abstract/Description
-
Metastasis is the primary cause of mortality in women with breast cancer. Recently, elevated serum levels of a glycoprotein known as chitinase-3 likeprotein- 1 (CHI3L1) has been correlated with poor prognosis and shorter survival of patients with cancer and inflammatory diseases. The biological and physiological functions of CHI3L1 in tumor progression have not yet been elucidated. In this document, we describe the role of CHI3L1 in tumor growth and metastasis and its relationship with...
Show moreMetastasis is the primary cause of mortality in women with breast cancer. Recently, elevated serum levels of a glycoprotein known as chitinase-3 likeprotein- 1 (CHI3L1) has been correlated with poor prognosis and shorter survival of patients with cancer and inflammatory diseases. The biological and physiological functions of CHI3L1 in tumor progression have not yet been elucidated. In this document, we describe the role of CHI3L1 in tumor growth and metastasis and its relationship with inflammation. Using well-established models of breast cancer, we show that CHI3L1 is increased in the serum of tumor bearing mice. We found that CHI3L1 levels are increased at both the “pre-metastatic” and “metastatic stage” and that tumor cells, splenic, alveolar and interstitial macrophages; and myeloid derived population produce CHI3L1. Furthermore, we demonstrated that CHI3L1 has an inhibitory role on the expression of interferon-gamma (IFN γ) by T cells, while enhancing the production of pro-inflammatory mediators by macrophages such as Cchemokine ligand 2 (CCL2/MCP-1), Chemokine CX motif ligand 2 (CXCL2/IL-8) and matrix metalloproteinase-9 (MMP-9), all of which promote tumor growth and metastasis. We demonstrated that in vivo treatment of tumor-bearing mice with chitin microparticles, a TH1 adjuvant and a substrate for CHI3L1, promoted immune effector functions with increased production of IFN-γ but decreased CCL2/MCP-1, CXCL2/IL-8 and MMP-9 expression by splenic and pulmonary macrophages. Significantly, in vivo administration of chitin microparticles decreased tumor growth and pulmonary metastasis in mammary tumor bearing mice. These results suggest that CHI3L1 may play a role in tumor progression. Inflammation plays a pivotal role during tumor progression and metastasis by promoting the production of pro-inflammatory molecules such as CHI3L1. However, little is known about how CHI3L1 expression can affect secondary sites to enhance metastasis. In these studies, we demonstrated that CHI3L1 alters the cellular composition and inflammatory mediators that aid in the establishment of a metastatic niche for the support of infiltrating tumor cells leading to accelerated tumor progression. Since previous studies showed that CHI3L1 modulates inflammation, we determined the role of CHI3L1 in the context of pre-existing inflammation and metastasis. We found that CHI3L1 deficient mice with preexisting inflammation had decreased pro-inflammatory mediators, and significant reduction in tumor volume and metastasis compared to wild type controls. Preexisting inflammation and CHI3L1 may be driving the establishment of a premetastatic milieu in the lungs and aiding in the establishment of metastasis. Understanding the role of CHI3L1 in inflammation during tumor progression could result in the design of targeted therapies for breast cancer patients.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004517, http://purl.flvc.org/fau/fd/FA00004517
- Subject Headings
- Biopharmaceutics, Breast -- Cancer -- Etiology, Breast -- Cancer -- Molecular aspects, Cell differentiation, Chitinase, Glycoproteins -- Metabolism, Inflammation, Mice as laboratory animals
- Format
- Document (PDF)
- Title
- Glycine propionyl-L-carnitine produces enhanced anaerobic work capacity with reduced lactate accumulation in resistance trained males.
- Creator
- Jacobs, Patrick L., Goldstein, Erica R., Blackburn, Will, Orem, Ihsan, Hughes, John J.
- Date Issued
- 2009-04-02
- PURL
- http://purl.flvc.org/fcla/dt/3327165
- Subject Headings
- Exercise Physiology, Glycine --Pharmacodynamics, Nitric Oxide --Metabolism, Carnitine --Pharmacology, Physical Endurance, Athletic Performance, Dietary Supplementation, Exercise Physiology --Drug Effects, Resistence Training
- Format
- Document (PDF)
- Title
- Characterization of receptor protein tyrosine phosphatase PTP69D in the giant fiber circuit.
- Creator
- Lee, LaTasha Hoskins, Godenschwege, Tanja A., Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
PTP69D is a receptor protein tyrosine phosphatase (RPTP) with two intracellular catalytic domains (Cat1 and Cat2), which has been shown to play a role in axon outgrowth and guidance of embryonic motorneurons, as well as targeting of photoreceptor neurons in the visual system of Drosophila melanogaster. Here, we characterized the developmental role of PTP69D in the giant fiber (GF) neurons; two interneurons in the central nervous system (CNS) that control the escape response of the fly. In...
Show morePTP69D is a receptor protein tyrosine phosphatase (RPTP) with two intracellular catalytic domains (Cat1 and Cat2), which has been shown to play a role in axon outgrowth and guidance of embryonic motorneurons, as well as targeting of photoreceptor neurons in the visual system of Drosophila melanogaster. Here, we characterized the developmental role of PTP69D in the giant fiber (GF) neurons; two interneurons in the central nervous system (CNS) that control the escape response of the fly. In addition to guidance and targeting functions, our studies reveal an additional role for PTP69D in synaptic terminal growth in the CNS. We found that inhibition of phosphatase activity in catalytic domain (Cat1) proximal to the transmembrane domain did not affect axon guidance or targeting but resulted in stunted terminal growth of the GFs. Cell autonomous rescue and knockdown experiments demonstrated a function for PTP69D in the GFs, but not its postsynaptic target neurons. In addition,complementation studies and structure-function analyses revealed that for GF terminal growth, Cat1 function of PTP69D requires the immunoglobulin and the Cat2 domain but not the fibronectin type III repeats nor the membrane proximal region. In contrast, the fibronectin type III repeats, but not the immunoglobulin domains, were previously shown to be essential for axon targeting of photoreceptor neurons. Thus, our studies uncover a novel role for PTP69D in synaptic terminal growth in the CNS that is mechanistically distinct from its function during earlier developmental processes.
Show less - Date Issued
- 2014
- PURL
- http://purl.flvc.org/fau/fd/FA00004301, http://purl.flvc.org/fau/fd/FA00004301
- Subject Headings
- Drosophila melanogaster., Protein-tyrosine phosphatase--Metabolism., Protein-tyrosine kinase., Protein kinases--Inhibitors., Phosphoprotein phosphatases., Transcription factors., Cell receptors., Cellular signal transduction.
- Format
- Document (PDF)
- Title
- Nitrate Use Efficiency In Tobacco Plants Constitutively Expressing A Maize Nitrate Transporter ZmNRT2.1.
- Creator
- Cruz, Jessica, Zhang, Xing-Hai, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences
- Abstract/Description
-
The NRT2 (high affinity nitrate transporter 2) family is a part of the iHATS (inducible high affinity system) that studies have shown is responsible for the influx of nitrate into the plant cell after provision of nitrate. The ZmNRT2.1 from Zea mays was constitutively expressed in Nicotiana tabacum. To assess how over-expression of this foreign NRT2.1 affects nitrate influx by plants, nitrate content in leaf and root tissue, gene expression, and vegetal growth were analyzed in media with...
Show moreThe NRT2 (high affinity nitrate transporter 2) family is a part of the iHATS (inducible high affinity system) that studies have shown is responsible for the influx of nitrate into the plant cell after provision of nitrate. The ZmNRT2.1 from Zea mays was constitutively expressed in Nicotiana tabacum. To assess how over-expression of this foreign NRT2.1 affects nitrate influx by plants, nitrate content in leaf and root tissue, gene expression, and vegetal growth were analyzed in media with deficient or high nitrate concentrations (0.1, 1, or 10 mM). Compared to wild type plants: the transgenic lines had a significantly larger fresh weight in all nitrate conditions; primary root length was significantly longer in the 0.1 and 1 mM nitrate conditions; both the fresh weight and the primary root length were significantly higher when 50 mM NaCl was applied as a stress factor to medias containing 0.1 and 10 mM nitrate.
Show less - Date Issued
- 2015
- PURL
- http://purl.flvc.org/fau/fd/FA00004492, http://purl.flvc.org/fau/fd/FA00004492
- Subject Headings
- Nitrogen--Fixation., Nitrogen-fixing plants--Metabolism., Crops and nitrogen., Field crops--Genetic engineering., Plants--Effect of nitrogen on., Soil microbiology.
- Format
- Document (PDF)
- Title
- Long-term glycine propionyl-l-carnitine supplementation and paradoxical effects on repeated anaerobic sprint performance.
- Creator
- Jacobs, Patrick L., Goldstein, Erica R.
- Date Issued
- 2010-10-28
- PURL
- http://purl.flvc.org/fcla/dt/3327167
- Subject Headings
- Anaerobic Threshold --Drug Effects, Anaerobic Threshold --Physiology, Athletic Performance, Athletic Performance --Physiology, Carnitine --Pharmacology, Dietary Supplementation, Exercise Physiology, Exercise Physiology --Drug Effects, Exercise Tolerance --Drug Effects, Glycine --Administration & Dosage, Glycine --Pharmacology, Nitric Oxide --Metabolism, Nitric Oxide --Pharmacodynamics
- Format
- Document (PDF)