Current Search: Zhong, Xiangnan (x)
View All Items
- Title
- KINOVA ROBOTIC ARM MANIPULATION WITH PYTHON PROGRAMMING.
- Creator
- Veit, Cameron, Zhong, Xiangnan, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
As artificial intelligence (AI), such as reinforcement learning (RL), has continued to grow, the introduction of AI for use in robotic arms in order to have them autonomously complete tasks has become an increasingly popular topic. Robotic arms have recently had a drastic spike in innovation, with new robotic arms being developed for a variety of tasks both menial and complicated. One robotic arm recently developed for everyday use in close proximity to the user is the Kinova Gen 3 Lite, but...
Show moreAs artificial intelligence (AI), such as reinforcement learning (RL), has continued to grow, the introduction of AI for use in robotic arms in order to have them autonomously complete tasks has become an increasingly popular topic. Robotic arms have recently had a drastic spike in innovation, with new robotic arms being developed for a variety of tasks both menial and complicated. One robotic arm recently developed for everyday use in close proximity to the user is the Kinova Gen 3 Lite, but limited formal research has been conducted about controlling this robotic arm both with an AI and in general. Therefore, this thesis covers the implementation of Python programs in controlling the robotic arm physically as well as the use of a simulation to train an RL based AI compatible with the Kinova Gen 3 Lite. Additionally, the purpose of this research is to identify and solve the difficulties in the physical instance and the simulation as well as the impact of the learning parameters on the robotic arm AI. Similarly, the issues in connecting two Kinova Gen 3 Lites to one computer at once are also examined. This thesis goes into detail about the goal of the Python programs created to move the physical robotic arm as well as the overall setup and goal of the robotic arm simulation for the RL method. In particular, the Python programs for the physical robotic arm pick up the object and place it at a different location, identifying a method to prevent the gripper from crushing an object without a tactile sensor in the process. The thesis also covers the effect of various learning parameters on the accuracy and steps to goal curves of an RL method designed to make a Kinova Gen 3 Lite grab an object in a simulation. In particular, a neural network implementation of RL method with one of the learning parameters changed in comparison to the optimal learning parameters. The neural network is trained using Python Anaconda to control a Kinova Gen 3 Lite robotic arm model for a simulation made in the Unity compiler.
Show less - Date Issued
- 2022
- PURL
- http://purl.flvc.org/fau/fd/FA00014022
- Subject Headings
- Robotics, Artificial intelligence, Reinforcement learning
- Format
- Document (PDF)
- Title
- INTELLIGENT OPERATION OF ROBOTIC ARMS BASED ON TURTLEBOT3 MOBILE ROBOTS.
- Creator
- Veit, Connor, Zhong, Xiangnan, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
As technology progresses, tasks involving object manipulation that were once conducted by humans are now being accomplished through robots. Specifically, robots carry out these goals through the utilization of different forms of artificial intelligence, including deep learning via a convolutional neural network. One robot made to accomplish this purpose is the ROS controlled TurtleBot3 Waffle Pi with an OpenMANIPULATOR-X robotic arm. This type of TurtleBot3 was developed with the express...
Show moreAs technology progresses, tasks involving object manipulation that were once conducted by humans are now being accomplished through robots. Specifically, robots carry out these goals through the utilization of different forms of artificial intelligence, including deep learning via a convolutional neural network. One robot made to accomplish this purpose is the ROS controlled TurtleBot3 Waffle Pi with an OpenMANIPULATOR-X robotic arm. This type of TurtleBot3 was developed with the express purpose of education and research but may not be limited to those two usages. Based on the current design of this classification of TurtleBot3, it may have multiple applications outside the testing environment, granting it further uses in a variety of tasks. The TurtleBot3 is easy to setup to fulfill the purposes for which the TurtleBot3 Waffle Pi was designed, and the exploration into further uses would allow for the discovery of alternatives to some tasks that normally require more work. For that reason, this thesis was conducted to determine the various uses of the TurtleBot3 with a robotic arm and if this robot can be used outside of a testing environment for various real-world tasks.
Show less - Date Issued
- 2022
- PURL
- http://purl.flvc.org/fau/fd/FA00014026
- Subject Headings
- Robotics, Artificial intelligence, Mobile robots
- Format
- Document (PDF)