Current Search: Yalamanchili, Ramakrishna. (x)
-
-
Title
-
Computations of normal vortex interaction with blades and circular cylinders.
-
Creator
-
Yalamanchili, Ramakrishna., Florida Atlantic University, Marshall, Jeffrey S., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
-
Abstract/Description
-
A numerical model for the simulation of three-dimensional normal blade-vortex interaction has been developed to study the bending and variation of core radius of the vortex due to the influence of the blade and the subsequent unsteady force on the blade. For thin blades, a procedure to enable instantaneous cutting of the vortex has been employed to study the vortex response to cutting. The vortex is represented by a filament model which includes axial flow within the core and non-uniform core...
Show moreA numerical model for the simulation of three-dimensional normal blade-vortex interaction has been developed to study the bending and variation of core radius of the vortex due to the influence of the blade and the subsequent unsteady force on the blade. For thin blades, a procedure to enable instantaneous cutting of the vortex has been employed to study the vortex response to cutting. The vortex is represented by a filament model which includes axial flow within the core and non-uniform core area. The vortex is convected with self-induced velocities given by the Biot-Savart line integral, and the effect of the cylinder is obtained using a vortex sheet panel method. The governing equations for the vortex axial velocity have a form similar to that of the one-dimensional gas dynamics equations and admit "shock-like" discontinuities. The results indicate that the amount of vortex bending due to interaction with the blade is primarily dependent on the ratio of blade thickness T to ambient vortex core radius sigma o, although for a given amount of bending of the vortex axis, increase in cylinder forward speed results in a decrease in vortex core radius. For blades with T/sigma o < 0(1), very little bending is observed for attack angles under the stall limit. In the case of vortex cutting by a blade, vortex shocks and expansion waves are observed to propagate on the vortex axis away from the blade.
Show less
-
Date Issued
-
1993
-
PURL
-
http://purl.flvc.org/fcla/dt/14985
-
Subject Headings
-
Helicopters, Blades--Noise, Rotors (Helicopters), Vortex-motion
-
Format
-
Document (PDF)