Current Search: Rimal, Binod (x)
-
-
Title
-
FINANCIAL TIME-SERIES ANALYSIS WITH DEEP NEURAL NETWORKS.
-
Creator
-
Rimal, Binod, Hahn, William Edward, Florida Atlantic University, Department of Mathematical Sciences, Charles E. Schmidt College of Science
-
Abstract/Description
-
Financial time-series data are noisy, volatile, and nonlinear. The classic statistical linear models may not capture those underlying structures of the data. The rapid advancement in artificial intelligence and machine learning techniques, availability of large-scale data, and increased computational capabilities of a machine opens the door to developing sophisticated deep learning models to capture the nonlinearity and hidden information in the data. Creating a robust model by unlocking the...
Show moreFinancial time-series data are noisy, volatile, and nonlinear. The classic statistical linear models may not capture those underlying structures of the data. The rapid advancement in artificial intelligence and machine learning techniques, availability of large-scale data, and increased computational capabilities of a machine opens the door to developing sophisticated deep learning models to capture the nonlinearity and hidden information in the data. Creating a robust model by unlocking the power of a deep neural network and using real-time data is essential in this tech era. This study constructs a new computational framework to uncover the information in the financial time-series data and better inform the related parties. It carries out the comparative analysis of the performance of the deep learning models on stock price prediction with a well-balanced set of factors from fundamental data, macroeconomic data, and technical indicators responsible for stock price movement. We further build a novel computational framework through a merger of recurrent neural networks and random compression for the time-series analysis. The performance of the model is tested on a benchmark anomaly time-series dataset. This new computational framework in a compressed paradigm leads to improved computational efficiency and data privacy. Finally, this study develops a custom trading simulator and an agent-based hybrid model by combining gradient and gradient-free optimization methods. In particular, we explore the use of simulated annealing with stochastic gradient descent. The model trains a population of agents to predict appropriate trading behaviors such as buy, hold, or sell by optimizing the portfolio returns. Experimental results on S&P 500 index show that the proposed model outperforms the baseline models.
Show less
-
Date Issued
-
2022
-
PURL
-
http://purl.flvc.org/fau/fd/FA00014009
-
Subject Headings
-
Neural networks (Computer science), Deep learning (Machine learning), Time-series analysis, Stocks, Simulated annealing (Mathematics)
-
Format
-
Document (PDF)