Current Search: Petroro, Carla. (x)
-
-
Title
-
Subgroups of bounded Abelian groups.
-
Creator
-
Petroro, Carla., Florida Atlantic University, Schmidmeier, Markus
-
Abstract/Description
-
Birkhoff raised the question of how to determine "relative invariants of subgroups" of a given group. Let us consider pairs (A, B ) where B is a finite pn-bounded Abelian group and A is a subgroup of B. Maps between pairs (A, B) --> (A', B') are morphisms f : B --> B' such that f (A) --> A'. Classification of such pairs, up to isomorphism, is Birkhoff's famous problem. By the Krull-Remak-Schmidt theorem, an arbitrary pair (A, B) is a direct sum of indecomposable pairs, and the multiplicities...
Show moreBirkhoff raised the question of how to determine "relative invariants of subgroups" of a given group. Let us consider pairs (A, B ) where B is a finite pn-bounded Abelian group and A is a subgroup of B. Maps between pairs (A, B) --> (A', B') are morphisms f : B --> B' such that f (A) --> A'. Classification of such pairs, up to isomorphism, is Birkhoff's famous problem. By the Krull-Remak-Schmidt theorem, an arbitrary pair (A, B) is a direct sum of indecomposable pairs, and the multiplicities of the indecomposables are determined uniquely. The purpose of this thesis is to describe the decomposition of such pairs, (A, B), explicitly for n = 2 and n = 3. We describe explicitly how an indecomposable pair can possibly embed into a given pair (A, B). This construction gives rise to formulas for the multiplicity of an indecomposable in the direct sum decomposition of the pair (A, B). These decomposition numbers form a full set of relative invariant, as requested by Birkhoff.
Show less
-
Date Issued
-
2004
-
PURL
-
http://purl.flvc.org/fcla/dt/13118
-
Subject Headings
-
Abelian groups, Modules (Algebra), Indecomposable modules, Representations of groups, Algebras, Linear
-
Format
-
Document (PDF)