Current Search: Pados, Dimitris (x)
View All Items
- Title
- CONNECTED MULTI-DOMAIN AUTONOMY AND ARTIFICIAL INTELLIGENCE: AUTONOMOUS LOCALIZATION, NETWORKING, AND DATA CONFORMITY EVALUATION.
- Creator
- Tountas, Konstantinos, Pados, Dimitris, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
The objective of this dissertation work is the development of a solid theoretical and algorithmic framework for three of the most important aspects of autonomous/artificialintelligence (AI) systems, namely data quality assurance, localization, and communications. In the era of AI and machine learning (ML), data reign supreme. During learning tasks, we need to ensure that the training data set is correct and complete. During operation, faulty data need to be discovered and dealt with to...
Show moreThe objective of this dissertation work is the development of a solid theoretical and algorithmic framework for three of the most important aspects of autonomous/artificialintelligence (AI) systems, namely data quality assurance, localization, and communications. In the era of AI and machine learning (ML), data reign supreme. During learning tasks, we need to ensure that the training data set is correct and complete. During operation, faulty data need to be discovered and dealt with to protect from -potentially catastrophic- system failures. With our research in data quality assurance, we develop new mathematical theory and algorithms for outlier-resistant decomposition of high-dimensional matrices (tensors) based on L1-norm principal-component analysis (PCA). L1-norm PCA has been proven to be resistant to irregular data-points and will drive critical real-world AI learning and autonomous systems operations in the future. At the same time, one of the most important tasks of autonomous systems is self-localization. In GPS-deprived environments, localization becomes a fundamental technical problem. State-of-the-art solutions frequently utilize power-hungry or expensive architectures, making them difficult to deploy. In this dissertation work, we develop and implement a robust, variable-precision localization technique for autonomous systems based on the direction-of-arrival (DoA) estimation theory, which is cost and power-efficient. Finally, communication between autonomous systems is paramount for mission success in many applications. In the era of 5G and beyond, smart spectrum utilization is key.. In this work, we develop physical (PHY) and medium-access-control (MAC) layer techniques that autonomously optimize spectrum usage and minimizes intra and internetwork interference.
Show less - Date Issued
- 2020
- PURL
- http://purl.flvc.org/fau/fd/FA00013617
- Subject Headings
- Artificial intelligence, Machine learning, Tensor algebra
- Format
- Document (PDF)
- Title
- AI COMPUTATION OF L1-NORM-ERROR PRINCIPAL COMPONENTS WITH APPLICATIONS TO TRAINING DATASET CURATION AND DETECTION OF CHANGE.
- Creator
- Varma, Kavita, Pados, Dimitris, Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
The aim of this dissertation is to achieve a thorough understanding and develop an algorithmic framework for a crucial aspect of autonomous and artificial intelligence (AI) systems: Data Analysis. In the current era of AI and machine learning (ML), ”data” holds paramount importance. For effective learning tasks, it is essential to ensure that the training dataset is accurate and comprehensive. Additionally, during system operation, it is vital to identify and address faulty data to prevent...
Show moreThe aim of this dissertation is to achieve a thorough understanding and develop an algorithmic framework for a crucial aspect of autonomous and artificial intelligence (AI) systems: Data Analysis. In the current era of AI and machine learning (ML), ”data” holds paramount importance. For effective learning tasks, it is essential to ensure that the training dataset is accurate and comprehensive. Additionally, during system operation, it is vital to identify and address faulty data to prevent potentially catastrophic system failures. Our research in data analysis focuses on creating new mathematical theories and algorithms for outlier-resistant matrix decomposition using L1-norm principal component analysis (PCA). L1-norm PCA has demonstrated robustness against irregular data points and will be pivotal for future AI learning and autonomous system operations. This dissertation presents a comprehensive exploration of L1-norm techniques and their diverse applications. A summary of our contributions in this manuscript follows: Chapter 1 establishes the foundational mathematical notation and linear algebra concepts critical for the subsequent discussions, along with a review of the complexities of the current state-of-the-art in L1-norm matrix decomposition algorithms. In Chapter 2, we address the L1-norm error decomposition problem by introducing a novel method called ”Individual L1-norm-error Principal Component Computation by 3-layer Perceptron” (Perceptron L1 error). Extensive studies demonstrate the efficiency of this greedy L1-norm PC calculator.
Show less - Date Issued
- 2024
- PURL
- http://purl.flvc.org/fau/fd/FA00014460
- Subject Headings
- Artificial intelligence, Machine learning, Neural networks (Computer science), Data Analysis
- Format
- Document (PDF)