Current Search: Moaed Abd (x)
-
-
Title
-
Feeling the beat: a smart hand exoskeleton for learning to play musical instruments.
-
Creator
-
Maohua Lin, Rudy Paul, Moaed Abd, James Jones, Darryl Dieujuste, Harvey Chim, Erik D. Engeberg
-
Abstract/Description
-
Individuals who have suffered neurotrauma like a stroke or brachial plexus injury often experience reduced limb functionality. Soft robotic exoskeletons have been successful in assisting rehabilitative treatment and improving activities of daily life but restoring dexterity for tasks such as playing musical instruments has proven challenging. This research presents a soft robotic hand exoskeleton coupled with machine learning algorithms to aid in relearning how to play the piano by ‘feeling’...
Show moreIndividuals who have suffered neurotrauma like a stroke or brachial plexus injury often experience reduced limb functionality. Soft robotic exoskeletons have been successful in assisting rehabilitative treatment and improving activities of daily life but restoring dexterity for tasks such as playing musical instruments has proven challenging. This research presents a soft robotic hand exoskeleton coupled with machine learning algorithms to aid in relearning how to play the piano by ‘feeling’ the difference between correct and incorrect versions of the same song. The exoskeleton features piezoresistive sensor arrays with 16 taxels integrated into each fingertip. The hand exoskeleton was created as a single unit, with polyvinyl acid (PVA) used as a stent and later dissolved to construct the internal pressure chambers for the five individually actuated digits. Ten variations of a song were produced, one that was correct and nine containing rhythmic errors. To classify these song variations, Random Forest (RF), K-Nearest Neighbor (KNN), and Artificial Neural Network (ANN) algorithms were trained with data from the 80 taxels combined from the tactile sensors in the fingertips. Feeling the differences between correct and incorrect versions of the song was done with the exoskeleton independently and while the exoskeleton was worn by a person. Results demonstrated that the ANN algorithm had the highest classification accuracy of 97.13% ± 2.00% with the human subject and 94.60% ± 1.26% without. These findings highlight the potential of the smart exoskeleton to aid disabled individuals in relearning dexterous tasks like playing musical instruments.
Show less
-
Date Issued
-
2023
-
PURL
-
http://purl.flvc.org/fau/fd/FAUIR000534
-
Format
-
Document (PDF)
-
-
Title
-
ARTIFICIAL INTELLIGENCE (AI) ENABLES SENSORIMOTOR INTEGRATION FOR PROSTHETIC HAND DEXTERITY.
-
Creator
-
Abd, Moaed A., Engeberg, Erik D., Florida Atlantic University, Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science
-
Abstract/Description
-
Hand amputation is a devastating feeling for amputees, and it is lifestyle changing since it is challenging to perform the basic life activities with amputation. Hand amputation means interrupting the closed loop between sensory feedback and motor control. The absence of sensory feedback requires a significant cognitive effort from the amputee to perform basic daily activities with prosthetic hand. Loss of tactile sensations is a major roadblock preventing amputees from multitasking or using...
Show moreHand amputation is a devastating feeling for amputees, and it is lifestyle changing since it is challenging to perform the basic life activities with amputation. Hand amputation means interrupting the closed loop between sensory feedback and motor control. The absence of sensory feedback requires a significant cognitive effort from the amputee to perform basic daily activities with prosthetic hand. Loss of tactile sensations is a major roadblock preventing amputees from multitasking or using the full dexterity of their prosthetic hands. One of the most significant features lacking from commercial prosthetic hands is sensory feedback, according to amputees. Many amputees abandoned their prosthetic devices due to the lack of tactile feedback. In the field of prosthetics, restoring sensory feedback is the most challenging task due to the complexity of integration between the prosthetic and the peripheral nervous system. A prosthetic hand with sensory feedback that imitates the intact hand would improve the lives of millions of amputees worldwide by inducing the prosthetic hand to be a part of the body image and significant impact the control of the prosthetic. To restore the sensory feedback and improve the dexterity for upper limb amputee, multiple components needed to be integrated together to provide the sensory feedback. Tactile sensors are the first components that needed to be integrated into the sensorimotor loop. In this research two tactile sensors were integrated in the sensory feedback loop. The first tactile sensor is BioTac which is a commercially available sensor. The first novel contribution with BioTac is the development of an ANN classifier to detect the direction a grasped object slips in a dexterous robotic hand in real time, and the second novel aspect of this study is the use of slip direction detection for adaptive robotic grasp reflexes. The second tactile sensor is the liquid metal sensor (LMS), this sensor was developed entirely in our lab (BioRobotics lab). The novel contribution for LMS is to detect and prevent slip in real time application, and to recognize different surface features and different sliding speeds.
Show less
-
Date Issued
-
2022
-
PURL
-
http://purl.flvc.org/fau/fd/FA00013875
-
Subject Headings
-
Artificial intelligence, Haptic devices, Tactile sensors, Sensorimotor integration, Artificial hands
-
Format
-
Document (PDF)