Current Search: Lau, Andy W.C. (x)
View All Items
- Title
- Fluctuation and correlation effects in a charged surface immersed in an asymmetric electrolyte solution.
- Creator
- Acharya, Pramod, Lau, Andy W. C., Graduate College
- Date Issued
- 2013-04-12
- PURL
- http://purl.flvc.org/fcla/dt/3361263
- Subject Headings
- Green's functions, Field theory (Physics), Electrostatics
- Format
- Document (PDF)
- Title
- CHARACTERIZING THE PHYSICAL PROPERTIES OF LIVING CELLS THROUGH MICROFLUIDIC IMPEDANCE SENSING.
- Creator
- Galpayage, Dona Kalpani Nisansala Udeni, Lau, Andy W.C., Du, Sarah E., Florida Atlantic University, Department of Physics, Charles E. Schmidt College of Science
- Abstract/Description
-
The purpose of this research is to explore and investigate the biophysical properties of living cells using microfluidics based electrical impedance sensing (EIS) technique. It provides a non-invasive approach to detect label-free biological markers in the regulation of cellular activities even at a molecular level. We specifically focus on the development, testing, and theoretical modeling of electrical impedance spectroscopy for neuroblastoma cells and endothelial cells. First, we...
Show moreThe purpose of this research is to explore and investigate the biophysical properties of living cells using microfluidics based electrical impedance sensing (EIS) technique. It provides a non-invasive approach to detect label-free biological markers in the regulation of cellular activities even at a molecular level. We specifically focus on the development, testing, and theoretical modeling of electrical impedance spectroscopy for neuroblastoma cells and endothelial cells. First, we demonstrate that the EIS technique can be used to monitor the progressive mitochondrial fission/fusion modification in genetically modified human neuroblastoma cell lines. Our results characterize quantitatively the abnormal mitochondrial dynamics through the variations in cytoplasm conductivity. Secondly, we employ a real time EIS method to determine the biophysical properties of the junctions which join one endothelial cell with one another in a monolayer of endothelial cells. In particular, we examine the role of the protein, c-MYC oncogene, in the barrier function. Our results show that the downregulation of c-MYC oncogene enhances the endothelial barrier dysfunction associated with inflammation. Finally, we measure and find that the electrical admittance (the reciprocal of the impedance) of the monolayer of endothelial cellular networks exhibits an anomalous power law of the form, Y ∝ ωα, over a wide range of frequency, with the value of the exponent, α, depending on the severity of the inflammation. We attribute the power law to the changes of the intercellular electric permeability between neighboring endothelial cells. Thus, the inflammation gives rise to relatively smaller values of α compared to that of the no-inflammation group. Furthermore, we propose a simple percolation model of a large R-C network to confirm the emergent of power law scaling behavior of the complex admittance, suggesting that the endothelial network behaves as a complex microstructural network and its electrical properties may be simulated by a large R-C network.
Show less - Date Issued
- 2020
- PURL
- http://purl.flvc.org/fau/fd/FA00013595
- Subject Headings
- Microfluidics, Impedance spectroscopy, Cells
- Format
- Document (PDF)
- Title
- Charge Regulation of a Surface Immersed in an Electrolyte Solution.
- Creator
- Acharya, Pramod, Lau, Andy W. C., Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
In this thesis, we investigate theoretically a new model of charge regulation of a single charged planar surface immersed in an aqueous electrolyte solution. Assuming that the adsorbed ions are mobile in the charged plane, we formulate a field theory of charge regulation where the numbers of adsorbed ions can be determined consistently by equating the chemical potentials of the adsorbed ions to that of the ions in the bulk. We analyze the mean-field treatment of the model for electrolyte of...
Show moreIn this thesis, we investigate theoretically a new model of charge regulation of a single charged planar surface immersed in an aqueous electrolyte solution. Assuming that the adsorbed ions are mobile in the charged plane, we formulate a field theory of charge regulation where the numbers of adsorbed ions can be determined consistently by equating the chemical potentials of the adsorbed ions to that of the ions in the bulk. We analyze the mean-field treatment of the model for electrolyte of arbitrary valences, and then beyond, where correlation effects are systematically taken into account in a loop expansion. In particular, we compute exactly various one-loop quantities, including electrostatic potentials, ion distributions, and chemical potentials, not only for symmetric (1, 1) electrolyte but also for asymmetric (2, 1) electrolyte, and make use of these quantities to address charge regulation at the one-loop level. We find that correlation effects give rise to various phase transitions in the adsorption of ions, and present phase diagrams for (1, 1) and (2, 1) electrolytes, whose distinct behaviors suggest that charge regulation, at the one-loop level, is no longer universal but depends crucially on the valency of the ions.
Show less - Date Issued
- 2016
- PURL
- http://purl.flvc.org/fau/fd/FA00004560, http://purl.flvc.org/fau/fd/FA00004560
- Subject Headings
- Surface chemistry., Intermolecular forces., Electrodynamics., Quantum field theory.
- Format
- Document (PDF)
- Title
- Non-Equilibrium Dynamics of Active Nematic Elastomers.
- Creator
- Mohammadi Gorak, Hadi, Lau, Andy W.C., Florida Atlantic University, Charles E. Schmidt College of Science, Department of Physics
- Abstract/Description
-
Active nematic elastomers are a class of active materials that possess the elasticity of a rubber, and the orientational symmetry of a liquid crystal. Their constituent elements are typically elongated, cross-linked and active. The cross-linking of the elements leads to an elasticity that prevents the material to ow like a liquid. These elements are active in a sense that they continuously consume and dissipate energy, creating a state that is far-from-equilibrium. Active nematic elastomers...
Show moreActive nematic elastomers are a class of active materials that possess the elasticity of a rubber, and the orientational symmetry of a liquid crystal. Their constituent elements are typically elongated, cross-linked and active. The cross-linking of the elements leads to an elasticity that prevents the material to ow like a liquid. These elements are active in a sense that they continuously consume and dissipate energy, creating a state that is far-from-equilibrium. Active nematic elastomers may be a good physical model for biological systems such as the metaphase spindle, a complex biological machine that is made of an integrated assembly of microtubules and molecular motors. These motors not only cross-link the microtubules, but also actively slide them against each other, creating a highly dynamic, non-equilibrium state. The metaphase spindle, like other non-equilibrium structures in biology, has important functions to perform. During mitosis, the spindle is responsible for (1) capturing the sister chromatids, (2) bringing all the sister chromatids to the equator of the mother cell, and (3) segregating the daughter chromosome to the opposite poles of the cell. Thus, a fundamental challenge to biological physics is to understand the complex dynamics of the spindle, and similar systems, using the tools of non-equilibrium statistical mechanics. In this Thesis, we develop and explore a phenomenological model for an active nematic elastomer. We formulate the dynamics of this phenomenological model by incorporating the contribution of the active elements to the standard formulation of the hydrodynamic equations of a passive system. In a coarse-grained picture, the activity is taken into account as an extra active stress, proportional to the alignment tensor, added to the momentum equation of an otherwise passive nematic elastomer. Having obtained the equations of motion of an active nematic elastomer, we then investigate the response of the system to an external field by means of examining the structure and the stability of the modes. An active nematic elastomer has eight modes, in which six modes are propagating and two modes are massive. Out of the six propagating modes, two modes are in the longitudinal direction, linked to the density waves, and the other four modes are in the transverse direction, linked to the shear waves. The nature of these propagating modes transitions from dissipative and oscillatory, and vice versa, depending on the length scales. In particular, their stability is largely determined in the hydrodynamic limit, by a competition between the stabilizing effect of the elasticity and the destabilizing effect of the activity. In fact, the activity renormalizes the elastic coefficients down to even a negative value in some cases and thus, rendering the system linearly unstable. This is in contrast to the well-known instability of an active nematic liquid crystal, which is always linearly unstable. We then map out and discuss the stability phase diagram of the active nematic elastomer. Next, we compute and study various equal-time correlation functions of an active nematic elastomer, assuming that the noise spectra are thermal in origin. We find that they can be conveniently arranged into two terms. The first term has the exact mathematical structure of the equal-time correlation functions of a passive nematic elastomer, albeit with certain coefficients renormalized by activity. The second term, which is proportional to the activity, represents the non-equilibrium nature of an active nematic elastomer, and manifestly breaks the Fluctuation-Dissipation Theorem. We also find that (1) the displacement-displacement correlation function decays inversely with the square of the wave number for both the compressible and incompressible nematic elastomer, similar to that of a passive nematic elastomer, with elastic coefficients renormalized by the activity. (2) The density-density correlation function approaches a constant at the long wave-length limit, since the conservation of mass links the density to the rate of changes of the displacement in the longitudinal direction. (3) The director-displacement correlation function is purely imaginary, and thus the director is locked to the displacement with a (π/2) phase-shift. (3) The director-director correlation function approaches a constant value in the long-wavelength limit, instead of decaying inversely with the square of the wave number, like it would for a liquid crystal. This is because of the massive mode stems from the coupling energy, and it indicates that director in the large length scale is locked to a specific angle. These theoretical results are in qualitative agreement with the experimental measurements of the spindle.
Show less - Date Issued
- 2019
- PURL
- http://purl.flvc.org/fau/fd/FA00013243
- Subject Headings
- Elastomers, Active nematic elastomers, Nonequilibrium thermodynamics
- Format
- Document (PDF)
- Title
- NOVEL RHEOTAXIS-BASED MICROFLUIDIC DEVICES FOR SORTING HUMAN SPERM.
- Creator
- Ataei, Afrouz, Lau, Andy W.C., Florida Atlantic University, Department of Physics, Charles E. Schmidt College of Science
- Abstract/Description
-
The ultimate challenge for assisted reproductive technologies (ARTs) is to select the most competent sperm population from a semen sample in an efficient way. In this thesis, we report on an effective sperm sorting microfluidic device that exploits the rheotaxis of sperm and investigates the sperm quality sorted under various flow conditions. Rheotaxis is the ability of a sperm cell to orient itself in the direction of the flow and swim against it. We developed a novel passively driven...
Show moreThe ultimate challenge for assisted reproductive technologies (ARTs) is to select the most competent sperm population from a semen sample in an efficient way. In this thesis, we report on an effective sperm sorting microfluidic device that exploits the rheotaxis of sperm and investigates the sperm quality sorted under various flow conditions. Rheotaxis is the ability of a sperm cell to orient itself in the direction of the flow and swim against it. We developed a novel passively driven pumping system that provides a steady flow rate while it requires no external power source. We have also developed another rheotaxis-based microfluidic device that washes out the raw semen sample from any dead or less motile sperm. The device consists of a collection and waste chamber. To evaluate the effect of the shape and height of the collection chamber, we measured the sperm motility and velocity parameters after sorting using varying the shape and height of the collection chamber. We demonstrated that sperm selected with all devices have higher motility, normal morphology, and a fewer degree of DNA fragmentation compared to a control group.
Show less - Date Issued
- 2022
- PURL
- http://purl.flvc.org/fau/fd/FA00013971
- Subject Headings
- Microfluidic devices, Rheotaxis, Spermatozoa, Reproductive Techniques, Assisted
- Format
- Document (PDF)
- Title
- pH Dynamics within the Drosophila Synaptic Cleft During Activity.
- Creator
- Feghhi, Touhid, Lau, Andy W.C., Macleod, Gregory T., Florida Atlantic University, Department of Physics, Charles E. Schmidt College of Science
- Abstract/Description
-
Acute pH sensitivity of many neural mechanisms highlights the vulnerability of neurotransmission to the pH of the extracellular milieu. The dogma is that the synaptic cleft will acidify upon neurotransmission because the synaptic vesicles corelease neurotransmitters and protons to the cleft, and the direct data from sensory ribbon-type synapses support the acidification of the cleft. However, ribbon synapses have a much higher release probability than conventional synapses, and it’s not...
Show moreAcute pH sensitivity of many neural mechanisms highlights the vulnerability of neurotransmission to the pH of the extracellular milieu. The dogma is that the synaptic cleft will acidify upon neurotransmission because the synaptic vesicles corelease neurotransmitters and protons to the cleft, and the direct data from sensory ribbon-type synapses support the acidification of the cleft. However, ribbon synapses have a much higher release probability than conventional synapses, and it’s not established whether conventional synapses acidify as well. To test the acidification of the cleft in the conventional synapse, we used genetically encoded fluorescent pH reporters targeted to the synaptic cleft of Drosophila larvae. We observed alkalinization rather than acidification during activity, and this alkalinization was dependent on the exchange of protons for calcium at the postsynaptic membrane. A reaction-diffusion computational model of the pH dynamics at the Drosophila larval neuromuscular junction was developed to leverage the experimental data. The model incorporates the release of glutamate, ATP, and protons from synaptic vesicles into the cleft, PMCA activity, bicarbonate, and phosphate buffering systems. By means of numerical simulations, we reveal a highly dynamic pH landscape within the synaptic cleft, harboring deep but exceedingly rapid acid transients that give way to a prolonged period of alkalinization.
Show less - Date Issued
- 2023
- PURL
- http://purl.flvc.org/fau/fd/FA00014221
- Subject Headings
- Synapses, pH (Chemistry), Hydrogen-ion concentration., Synaptic Transmission, Drosophila
- Format
- Document (PDF)