Current Search: Kennedy, Robert Kwan Lee (x)
View All Items
- Title
- Parallel Distributed Deep Learning on Cluster Computers.
- Creator
- Kennedy, Robert Kwan Lee, Khoshgoftaar, Taghi M., Florida Atlantic University, College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
- Abstract/Description
-
Deep Learning is an increasingly important subdomain of arti cial intelligence. Deep Learning architectures, arti cial neural networks characterized by having both a large breadth of neurons and a large depth of layers, bene ts from training on Big Data. The size and complexity of the model combined with the size of the training data makes the training procedure very computationally and temporally expensive. Accelerating the training procedure of Deep Learning using cluster computers faces...
Show moreDeep Learning is an increasingly important subdomain of arti cial intelligence. Deep Learning architectures, arti cial neural networks characterized by having both a large breadth of neurons and a large depth of layers, bene ts from training on Big Data. The size and complexity of the model combined with the size of the training data makes the training procedure very computationally and temporally expensive. Accelerating the training procedure of Deep Learning using cluster computers faces many challenges ranging from distributed optimizers to the large communication overhead speci c to a system with o the shelf networking components. In this thesis, we present a novel synchronous data parallel distributed Deep Learning implementation on HPCC Systems, a cluster computer system. We discuss research that has been conducted on the distribution and parallelization of Deep Learning, as well as the concerns relating to cluster environments. Additionally, we provide case studies that evaluate and validate our implementation.
Show less - Date Issued
- 2018
- PURL
- http://purl.flvc.org/fau/fd/FA00013080
- Subject Headings
- Deep learning., Neural networks (Computer science)., Artificial intelligence., Machine learning.
- Format
- Document (PDF)
- Title
- NOVEL TECHNIQUES FOR HANDLING IMBALANCED DATA WITH UNSUPERVISED METHODS.
- Creator
- Kennedy, Robert Kwan Lee, Khoshgoftaar, Taghi M., Florida Atlantic University, Department of Computer and Electrical Engineering and Computer Science, College of Engineering and Computer Science
- Abstract/Description
-
In the modern data landscape, vast amounts of unlabeled data are continuously generated, necessitating development of robust unsupervised techniques for handling unlabeled data. This is the case for fraud detection and healthcare sectors analyses, where data is often significantly imbalanced. This dissertation focuses on novel techniques for handling imbalanced data, with specific emphasis on a novel unsupervised class labeling technique for unlabeled fraud detection datasets and unlabeled...
Show moreIn the modern data landscape, vast amounts of unlabeled data are continuously generated, necessitating development of robust unsupervised techniques for handling unlabeled data. This is the case for fraud detection and healthcare sectors analyses, where data is often significantly imbalanced. This dissertation focuses on novel techniques for handling imbalanced data, with specific emphasis on a novel unsupervised class labeling technique for unlabeled fraud detection datasets and unlabeled cognitive datasets. Traditional supervised machine learning relies on labeled data, which is often expensive and difficult to create, particularly in domains requiring expert input. Additionally, such datasets suffer from challenges associated with class imbalance, where one class has significantly fewer examples than another, complicating model training and significantly reducing performance. The primary objectives of this dissertation include developing a novel unsupervised cleaning method, and an innovative unsupervised class labeling method. We validate and evaluate our methods across various datasets, which include two Medicare fraud detection datasets, a credit card fraud detection dataset, and three datasets used for detecting cognitive decline. Our unique approach involves using an unsupervised autoencoder to learn from dataset features and synthesize labels. Primarily targeting imbalanced datasets, but still effective for balanced datasets, our method calculates an error metric for each instance. This metric is used to distinguish between fraudulent and legitimate cases, allowing us to assign a binary class label. To further improve label generation, we integrate an unsupervised feature selection method that ranks and identifies the most important features without using class labels.
Show less - Date Issued
- 2024
- PURL
- http://purl.flvc.org/fau/fd/FA00014547
- Subject Headings
- Machine learning, Big data, Computer science
- Format
- Document (PDF)