Current Search: Hijazi, Ahmad Alex. (x)
-
-
Title
-
Aggregation kinetics of A\U+fffd\ peptides and the inhibition effects of small molecules on A\U+fffd\ peptide aggregation.
-
Creator
-
Hijazi, Ahmad Alex., Charles E. Schmidt College of Science, Department of Chemistry and Biochemistry
-
Abstract/Description
-
The pathology of Alzheimer's disease (AD) remains elusive. Competing evidence links amylois \U+fffd\-peptide (A\U+fffd\) amyloid formation to the phenotype of AD (1). The mechanism of amyloid fibril formation has been an ongoing investigation for many years. A\U+fffd\10-23 peptide, a fragment of A\U+fffd\1-42 peptide, contained crucial hydrophobic core residues (2). In this study, an investigation was launched to study the aggreagation process of A\U+fffd\1023 peptide and its ability to form...
Show moreThe pathology of Alzheimer's disease (AD) remains elusive. Competing evidence links amylois \U+fffd\-peptide (A\U+fffd\) amyloid formation to the phenotype of AD (1). The mechanism of amyloid fibril formation has been an ongoing investigation for many years. A\U+fffd\10-23 peptide, a fragment of A\U+fffd\1-42 peptide, contained crucial hydrophobic core residues (2). In this study, an investigation was launched to study the aggreagation process of A\U+fffd\1023 peptide and its ability to form amyloid fibrils. Furthermore, the presence of its hydrophobic core showed importance for its ability to aggregate and form amyloid fibrils. Thereafter, the inhibition of A\U+fffd\1-42 peptide aggregation was studied by using pyrimidine-based compounds. A\U+fffd\1-42 peptides, known to be neurotoxic, aggregate to form amyloid fibrils (3). This investigation may provide insight into the development of novel small molecular candidates to treat AD.
Show less
-
Date Issued
-
2012
-
PURL
-
http://purl.flvc.org/FAU/3358550
-
Subject Headings
-
Amyloid beta-protein, Proteins, Metabolism, Disorders, Prions, Alzheimer's disease
-
Format
-
Document (PDF)