Current Search: Das, Debdutta. (x)
-
-
Title
-
Reinforcement of syntactic foam with SiC nanoparticles.
-
Creator
-
Das, Debdutta., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering
-
Abstract/Description
-
In this investigation, polymer precursor of syntactic foam has been reinforced with SiC nanoparticles to enhance mechanical and fracture properties. Derakane 8084 vinyl ester resin was first dispersed with 1.0 wt% of SiC particles using a sonic cavitation technique. In the next step, 30.0 wt% of microspheres (3M hollow glass borosilicate, S-series) were mechanically mixed with the nanophased vinyl ester resin, and cast into rectangular molds. A small amount of styrene was used as dilutant to...
Show moreIn this investigation, polymer precursor of syntactic foam has been reinforced with SiC nanoparticles to enhance mechanical and fracture properties. Derakane 8084 vinyl ester resin was first dispersed with 1.0 wt% of SiC particles using a sonic cavitation technique. In the next step, 30.0 wt% of microspheres (3M hollow glass borosilicate, S-series) were mechanically mixed with the nanophased vinyl ester resin, and cast into rectangular molds. A small amount of styrene was used as dilutant to facilitate mixing of microspheres. The size of microspheres and SiC nanoparticles were 20-30 um and 30-50 nm, respectively. Tension, compression, and flexure tests were conducted following ASTM standards and a consistent improvement in strength and modulus within 20-35% range was observed. Fracture toughness parameters such as KIC and GIC were also determined using ASTM E-399. An improvement of about 11-15% was observed. Samples were also subjected to various environmental conditions and degradation in material properties is reported.
Show less
-
Date Issued
-
2009
-
PURL
-
http://purl.flvc.org/FAU/359923
-
Subject Headings
-
Composite materials, Design, Polyurethanes, Mechanical properties, Epoxy resins, Nanostructured materials
-
Format
-
Document (PDF)